DATA SHEET

Signal Diodes

Order code	Manufacturer code	Description
$47-2904$	BAT43	BAT43 30V SILICON SCHOTTKY DIODE (ST) RC

Signad Diodes	Page 1 of
The enclosed information is believed to be correct, Intormation may change 'without notice' due to	Revision A
product improvement. Users should ensure that the product is suitable for their use. E. \& O. E.	$12 / 12 / 2006$

BAT42 BAT43

SMALL SIGNAL SCHOTTKY DIODES

DESCRIPTION

General purpose, metal to silicon diodes featuring very low turn-on voltage fast switching.
These devices have integrated protection against excessive voltage such as electrostatic dis-

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
$\mathrm{V}_{\text {RRM }}$	Repetitive Peak Reverse Voltage	30	V	
I_{F}	Forward Continuous Current	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	200	mA
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Fordware Current	$\mathrm{t}_{\mathrm{p}} \leq 1 \mathrm{~s}$ $\delta \leq 0.5$	500	mA
$\mathrm{I}_{\text {FSM }}$	Surge non Repetitive Forward Current ${ }^{\star}$	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	4	A
$\mathrm{P}_{\text {tot }}$	Power Dissipation*	$\mathrm{T}_{\mathrm{I}}=65^{\circ} \mathrm{C}$	200	mW
$\mathrm{~T}_{\text {stg }}$	Storage and Junction Temperature Range	-65 to +150 $\mathrm{~T}_{\mathrm{j}}$	65 to +125	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Temperature for Soldering during 10 s at 4 mm from Case	230	${ }^{\circ} \mathrm{C}$	

THERMAL RESISTANCE

Symbol	Test Conditions	Value	Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	Junction-ambient *		300
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

* On infinite heatsink with 4 mm lead length

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol	Test Conditions			Min.	Typ.	Max.	Unit
$V_{\text {BR }}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		30			V
VF^{*}	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{IF}=200 \mathrm{~mA}$	All Types			1	V
	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	BAT 42			0.4	
	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$				0.65	
	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$	BAT 43	0.26		0.33	
	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$				0.45	
$\mathrm{I}_{\mathrm{R}}{ }^{\text {a }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$			0.5	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{ÉC}$					100	

DYNAMIC CHARACTERISTICS

Symbol	Test Conditions	Min.	Typ.	Max.	Unit
C	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{R}}=1 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{MHz}$		7		pF
trr	$\mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{I}_{F}=10 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA} \quad \mathrm{i}_{\mathrm{rr}}=1 \mathrm{~mA}$ $\mathrm{R}_{\mathrm{L}}=100 \Omega$			5	ns
h	$\mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{R}_{\mathrm{L}}=15 \mathrm{~K} \Omega \quad \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \quad \mathrm{f}=45 \mathrm{MHz} \quad \mathrm{V}_{\mathrm{i}}=2 \mathrm{~V}$	80			$\%$

* Pulse test: $t_{p} \leq 300 \mu \mathrm{~s} \quad \delta<2 \%$.

Fig. 1: Forward current versus forward voltage at different temperatures (typical values).

Fig. 2: Forward current versus forward voltage (typical values).

Fig. 3: Reverse current versus junction temperature (typical values).

Fig. 4: Reverse current versus continuous reverse voltage.

Fig. 5: Capacitance C versus reverse applied voltage V_{R} (typical values).

PACKAGE MECHANICAL DATA
DO-35

Cooling method: by convection and conduction
Marking: clear, ring at cathode end.
Weight: 0.15 g

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

