WIMA MP 3-Y2

Metallized Paper (MP) RFI-Capacitors Class Y2 PCM 10 mm and 15 mm

Special Features

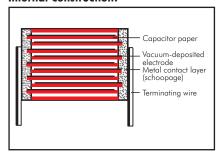
- Particularly high reliability against active and passive flammability
- Excellent self-healing as well as high voltage strength
- High degree of interference suppression due to good attenuation and low ESR
- For temperatures up to +110° C
- According to RoHS 2011/65/EC

Typical Applications

Class Y2 RFI applications to meet EMC regulations

- Capacitors connected to the mains between phase or neutral and earthed casing
- By-passing of the basic or supplementary insulation, pulse peak voltage ≤ 5 kV

Construction


Dielectric:

Paper, epoxy resin impregnated

Capacitor electrodes:

Vacuum-deposited

Internal construction:

Encapsulation:

Self-extinguishing epoxy resin, UL 94 V-0. metal foil

Terminations:

Tinned wire.

Marking:

Marking: Black on Silver.

Electrical Data

Capacitance range:

1000 pF to 0.022 μ F (E12-values on request)

Rated voltage:

250 VAC

Continuous DC voltage* (general guide): ≤ 1000 V

Capacitance tolerances:

±20%

Operating temperature range:

-40° C to +110° C

Climatic test category:

40/110/56/C in accordance with IEC **Insulation resistance** at +20° C:

 $\geq 12 \times 10^3 M\Omega$

Measuring voltage: 100 V/1 min.

Dissipation factors:

tan $\delta \leqslant$ 13 x 10⁻³ at 1 kHz and +20° C

Approvals:

lest	sp	ec	IŤI	cat	10	ns	:

In accordance with IEC 60384-14

Maximum pulse rise time:

Capacitance pF/ µ F	Pulse rise time V/µsec max. operation
1000	1100
1500	1100
2200 4700	500
6800 0.022	300

for pulses equal to a voltage amplitude with $\sqrt{2}$ x 250 VAC = 355 V according to IEC 60384-14

Test voltage: 2700 VDC, 2 sec.

Reliability:

Operational life $> 300\,000$ hours Failure rate < 1 fit (0.5 x U_r and 40° C)

Country	Authority	Specification	Symbol	Approval-No.
Germany	VDE	IEC 60384-14/3	EN 132 400	87455
USA	UL	UL 1283	IR	E 100438
Canada	CSA	C 22.2 No. 8		LR 93312-1

Mechanical Tests

Pull test on pins:

10 N in direction of pins according to IEC 60068-2-21

Vibration:

6 hours at 10 ... 2000 Hz and 0.75 mm displacement amplitude or 10 g in accordance with IEC 60068-2-6

Low air density:

1kPa = 10 mbar in accordance with IEC 60068-2-13

Bump test:

4000 bumps at 390 m/sec² in accordance with IFC 60068-2-29

* If safety-approved EMI suppression capacitors are operated with a DC voltage being above the specified AC voltage rating the given approvals are no longer valid (IEC 60384-14).

Furthermore the permissible pulse rise time du/dt (F_{max} .) will be subject to a reduction according to

 $F_{max.} = F_r \times \sqrt{2} \times UAC / UDC$

if the DC operating voltage UDC is higher than $\sqrt{2}$ x UAC

Packing

Available taped and reeled.

Detailed taping information and graphs at the end of the catalogue.

For further details and graphs please refer to Technical Information.

WIMA MP 3-Y2

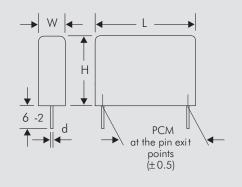
Continuation

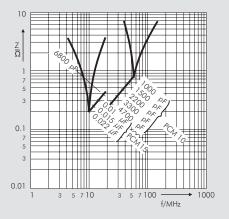
General Data

C	250 VAC*								
Capacitance	W	Н	L	PCM**	Part number				
1000 pF	4	8.5	13.5	10	MPY20W1100FA00				
1500 "	4	8.5	13.5	10	MPY20W1150FA00				
2200 "	4	8.5	13.5	10	MPY20W1220FA00				
3300 "	4	8.5	13.5	10	MPY20VV1330FA00				
4700 "	5	10	13.5	10	MPY20W1470FB00				
6800 "	5	13	19	15	MPY20W1680FC00				
0.01 µ F	5	13	19	15	MPY20W2100FC00				
0.015 "	6	14	19	15	MPY20W2150FD00				
0.022 "	7	15	19	15	MPY20VV2220FE00				

^{*} f = 50/60 Hz

Upon request with long pins 35-2 mm max.


Dims. in mm.


d = 0.6 Ø if PCM 10

d = 0.8 Ø if PCM 15

Part number completion:

Tolerance: 20 % = MPacking: bulk = S Pin length: 6-2 = SDTaped version see page 148.

Impedance change with frequency (general guide)

Rights reserved to amend design data without prior notification.

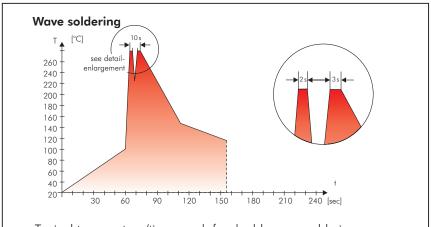
^{**} PCM = Printed circuit module = pin spacing

Recommendation for Processing and Application of **Through-Hole Capacitors**

Soldering Process

A preheating of through-hole WIMA capacitors is allowed for temperatures $T_{\text{max}} < 100 \,^{\circ} \text{C}.$

In practice a preheating duration of t < 5 min. has been proven to be best.


Single wave soldering

Soldering bath temperature: $T < 260 \,^{\circ}\, C$ Immersion time: t < 5 sec

Double wave soldering

Soldering bath temperature: $T < 260 \,^{\circ}\, C$ Immersion time: $2 \times t < 3 \text{ sec}$

Due to different soldering processes and heat requirements the graphs are to be regarded as a recommendation only.

Typical temperature/time graph for double wave soldering

·WIMA Quality and Environmental Philosophy

ISO 9001:2008 Certification

ISO 9001:2008 is an international basic standard of quality assurance systems for all branches of industry. The approval according to ISO 9001:2008 of our factories by the VDE inspectorate certifies that organisation, equipment and monitoring of quality assurance in our factories correspond to internationally recognized standards.

WIMA WPCS

The WIMA Process Control System (WPCS) is a quality surveillance and optimization system developed by WIMA. WPCS is a major part of the quality-oriented WIMA production. Points of application of WPCS during production process:

- incoming material inspection
- metallization
- film inspection
- schoopage
- pre-healing
- pin attachment
- cast resin preparation/ encapsulation
- 100% final inspection
- AQL check

WIMA Environmental Policy

All WIMA capacitors, irrespective of whether through-hole devices or SMD, are made of environmentally friendly materials. Neither during manufacture nor in the product itself any toxic substances are used, e.g.

- Lead
- PBB/PBDE
- PCB
- Arsenic
- Cadmium
- Hydrocarbon chloride
- Mercury
- Chromium 6+

We merely use pure, recyclable materials for packing our components, such as:

- carton
- cardboard
- adhesive tape made of paper
- polystyrene

We almost completely refrain from using packing materials such as:

- foamed polystyrene (Styropor®)
- adhesive tapes made of plastic
- metal clips

RoHS Compliance

According to the RoHS Directive 2011/65/EC certain hazardous substances like e.g. lead, cadmium, mercury must not be used any longer in electronic equipment as of July 1st, 2006. For the sake of the environment WIMA has refraind from using such substances since years already.

Tape for lead-free WIMA capacitors

DIN EN ISO 14001:2004

WIMA's environmental management has been established in accordance with the auidelines of DIN EN ISO 14001:2004 to optimize the production processes with regard to energy and resources.

Typical Dimensions for Taping Configuration

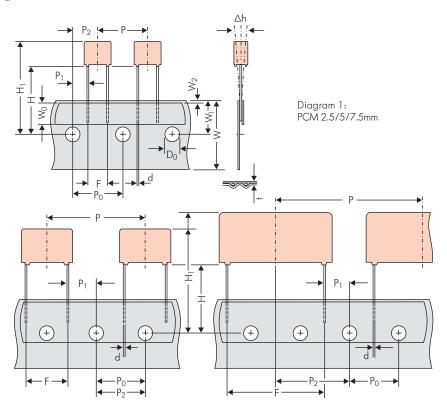


Diagram 2: PCM 10/15 mm

Diagram 3: PCM 22.5 and 27.5*mm
*PCM 27.5 taping possible with two feed holes between components

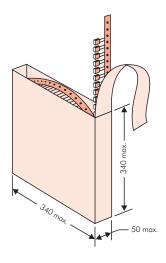
Dimensions for Radial Taping										
Designation	Symbol	PCM 2.5 taping	PCM 5 taping	PCM 7.5 taping	PCM 10 taping*	PCM 15 taping*	PCM 22.5 taping	PCM 27.5 taping		
Carrier tape width	W	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5		
Hold-down tape width	W ₀	6.0 for hot-sealing adhesive tape	6.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape		
Hole position	W ₁	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5		
Hold-down tape position	W ₂	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.		
Feed hole diameter	D ₀	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2		
Pitch of component	Р	12.7 ±1.0	12.7 ±1.0	12.7 ±1.0	25.4 ±1.0	25.4 ±1.0	38.1 ±1.5	38.1 ±1.5 or 50.8 ±1.5		
Feed hole pitch	P ₀	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max.	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max.	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pito error max. 1.0 mm/20 pito		
Feed hole centre to pin	P ₁	5.1 ±0.5 3.85 ±0.7		2.6 ±0.7	7.7 ±0.7	5.2 ±0.7	7.8 ±0.7	5.3 ±0.7		
Hole centre to component centre	P ₂	6.35 ±1.3	6.35 ±1.3	6.35 ±1.3 12.7 ±1.3		12.7 ±1.3	19.05 ±1.3	19.05 ±1.3		
Feed hole centre to bottom		16.5 ±0.3	16.5 ±0.3	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5		
edge of the component	Н	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5		
Feed hole centre to top edge of the component	H ₁	H+H _{component} < H ₁ 32.25 max.	$H+H_{component} < H_1$ 32.25 max.	H+H _{component} < H ₁ 24.5 to 31.5	H+H _{component} < H ₁ 25.0 to 31.5	H+H _{component} < H ₁ 26.0 to 37.0	H+H _{component} < H ₁ 30.0 to 43.0	H+H _{component} < H ₁ 35.0 to 45.0		
Pin spacing at upper edge of carrier tape	F	2.5 ±0.5	5.0 ^{+0.8} _{-0.2}	7.5 ±0.8	10.0 ±0.8 15 ±0.8		22.5 ±0.8	27.5 ±0.8		
Pin diameter	d	0.4 ±0.05	0.5 ±0.05	*0.5 ±0.05 or 0.6 +0.06	*0.5 ±0.05 or 0.6 +0,06 -0.05	0.8 +0,08	0.8 +0,08	0.8 +0.08		
Component alignment	Δh	± 2.0 max.	± 2.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.	\pm 3.0 max.		
Total tape thickness	t	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2		
D. I.		ROLL//	AMMO	AWMO						
Package (see also page 149)		REEL \$\tilde{9}\$ 360 max. \$\tilde{9}\$ 30 \pm 1	$B \begin{array}{c} 52 \pm 2 \\ 58 \pm 2 \end{array} ight\} \begin{array}{c} depending on \\ comp. dimensions \end{array}$	REEL # 360 max. B 58 ±2 or REEL # 500 max. B 50 ±2 ± 2 depending $\pm 6.0 \pm 2$ ± 2 depending $\pm 6.0 \pm 2$ ± 3 ± 4						
Unit see details page 150.							•			

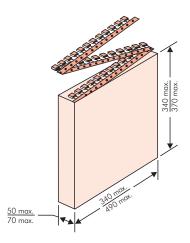
Dims in mm.

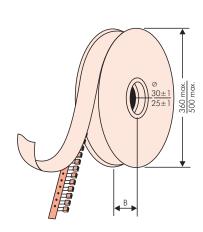
Please clarify customer-specific deviations with the manufacturer.

[•] Diameter of pins see General Data.

^{*} PCM 10 and PCM 15 can be crimped to PCM 7.5. Position of components according to PCM 7.5 (sketch 1). $P_0 = 12.7$ or 15.0 is possible


Types of Tape Packaging of Capacitors for Automatic Radial Insertion




■ ROLL Packaging

AMMO Packaging

■ REEL Packaging

BAR CODE (Labelling)

Labelling of package units in plain text and with alphanumerical Bar Code

Scanner decoding of

- WIMA supplier number
- Customer's P/O number
- Customer's part number
- WIMA confirmation number
- WIMA part number
- Lot number
- Date code
- Quantity

In addition part description of

- article
- capacitance value
- rated voltage
- dimensions
- capacitance tolerance
- packing

as well as gross weight and customer's name are indicated in plain text.

BARCODE "Code 39"

Packing Quantities for Capacitors with Radial Pins in PCM 2.5 mm to 22.5 mm

					pcs. per packing unit ROLL REEL AMMO							
PCM		Size			bulk	ROLL	Ø 360	EL Ø 500	AM 340 × 340	MO 490 × 370		
I CIVI							H16.5 H18.5	H16.5 H18.5	H16.5 H18.5	H16.5 H18.5		
	W	Н	L	Codes	5000	N O	FI	H J	A C	B D		
	2.5	7 7.5	4.6 4.6	0B 0C	5000 5000	2200 2000	2500 2300	_	2800 2300	_		
2.5 mm	3.8	8.5	4.6	0D	5000	1500	1800	_	1800	_		
	4.6	9	4.6	0E	5000	1200	1500	-	1500	-		
	5.5	10	4.6	0F	5000	900	1200	-	1200	-		
	2.5	6.5	7.2	1A	5000	2200	2500	-	2800	-		
	3 3.5	7.5 8.5	7.2 7.2	1B 1C	5000 5000	2000 1600	2300 2000	-	2300 2000	_		
	4.5	6.5	7.2	1D	6000	1300	1500	_	1500	_		
	4.5	9.5	7.2	1E	4000	1300	1500	-	1500	-		
	5	10	7.2	1F	3500	1100	1400	-	1400	-		
5 mm	5.5	7	7.2	1G	4000	1000	1200	-	1200	-		
	5.5 6.5	11.5 8	7.2 7.2	1H 1I	2500 2500	1000 800	1200 1000	_	1200 1000	_		
	7.2	8.5	7.2	1J	2500	700	1000	_	1000	_		
	7.2	13	7.2	1K	2000	700	950	-	1000	-		
	8.5	10	7.2	1L	2000	600	800	-	800	-		
	8.5	14 16	7.2 7.2	1M 1N	1500 1000	600 500	800 600	_	800 400	_		
	2.5	7	10	2A	5000	_	2500	4400	2500	_		
	3	8.5	10	2B	5000	_	2200	4300	2300	4150		
	4	9	10	2C	4000	_	1 <i>7</i> 00	3200	1700	3100		
7.5 mm	4.5	9.5	10.3	2D	3500	-	1500	2900	1400	2800		
	5	10.5	10.3	2E 2F	3000	-	1300	2500	1300	-		
	5.7 7.2	12.5 12.5	10.3 10.3	2F 2G	2000 1500	_	1000 900	2200 1800	1100 1000	_		
	3	9	13	3A	3000	_	1100	2200	-	1900		
	4	8.5	13.5	FA	3000	_	900	1600	_	1450		
	4	9	13	3C	3000	-	900	1600	-	1450		
10 mm	4	9.5	13	3D	3000	-	900	1600	-	1400		
10 mm	5 5	10	13.5	FB 3F	2000 3000	_	700 700	1300 1300	_	1200 1200		
	6	12	13	3G	2400	_	550	1100	_	1000		
	6	12.5	13	3H	2400	_	550	1100	-	1000		
	8	12	13	31	2000	-	400	800	-	740		
	5	11	18	4B	2400	-	600	1200	-	1150		
	5	13 12.5	19 18	FC 4C	1000 2000	-	600 500	1200 1000	-	1200 1000		
	6	14.5	19	FD FD	1000	_	500	1000	_	1000		
	7	14	18	4D	1600	-	450	900	-	850		
15	7	15	19	FE	1000	-	450	900	-	850		
15 mm	8	15 17	18	4F	1200	-	400	800	-	740 740		
	9	14	19 18	FF 4H	500 1200	_	400 350	800 700	_	740 650		
	9	16	18	4J	900	-	350	700	-	650		
	10	18	19	FG	500	-	300	650	-	590		
	11	14	18	4M	1000	-	300	600	-	540		
	5	14	26.5	5A	1200	-	-	800	-	770		
	6 7	15 16.5	26.5 26.5	5B 5D	1000 <i>7</i> 60	_	_ _	700 600	_	640 550		
	8	20	28	FH	500	_	_	500	_	480		
22.5 mm	8.5	18.5	26.5	5F	500	-	-	480	-	450		
22.5	10	22	28	FI	540*	-	-	420	-	380		
	10.5 10.5	19 20.5	26.5	5G 5H	680* 680*	_	_	400	_	360		
	10.5	20.5	26.5 26.5	5I	680*	_	_	400 380	_	360 350		
	12	24	28	FJ	450*	-	-	350	-	310		

^{*} TPS (Tray-Packing-System). Plate versions may have different packing units. Samples and pre-production needs on request.

Moulded versions.

Rights reserved to amend design data without prior notification.

Packing Quantities for Capacitors with Radial Pins in PCM 27.5 mm to 52.5 mm

	pcs. per packing unit														
		٥.				REEL				AMMO					
PCM		Si	ze		bulk		ø3	ø 360 ø 500		500	340 × 340		490 × 370		
					H16.5	H18.5	H16.5	H18.5	H16.5	H18.5	H16.5	H18.5	H16.5	H18.5	
	W	Н	L	Codes	S	N	0	F	- 1	Н	J	Α	С	В	D
	9	19	31.5	6A	640*		_	_	-		′340*	-	_	4	20
	11	21	31.5	6B	544*	-	-	-	-		280*	-	_		50
	13	24	31.5	6D	448*	-	_	-	-	3	800	-	_	2	90
	13	25	33	FK	336*	-	-	-	-		-	-	_	-	-
27 F	15	26	31.5	6F	384*	-	-	-	-	2	270	-	-	2	50
27.5 mm	15	26	33	FL	288*	-	_	-	-		-	-	_	-	-
	17	29	31.5	6G	176*	-	-	-	-		-	-	_	-	
	17 19	34.5 30	31.5 31.5	6I 6L	176* 50*		-	-	-		_	-	_	-	-
	20	32	33	FM	216*	_		_		_		-	_ _	_	
	20	39.5	31.5	6J	144*	-					_		-		
	9	19	41.5	7A	480*		_	-		-		-		_	
	11	22	41.5	7B	408*			-					_	-	
	13	24	41.5	7C	252*	-				-		-			
	15	26	41.5	7D	144*	-		-	-		_	-	_	-	-
37.5 mm	17	29 32	41.5 41.5	7E 7F	132*	-		-			_	-	_	_	
37.5 mm	19 20	39.5	41.5	7F 7G	108* 108*		-	-	-		_	-	_	-	-
	24	45.5	41.5	7G 7H	84*		_		_		_		_		_
	31	46	41.5	71	72*		_	_	_		_	_	_	_	_
	35	50	41.5	7J	35*		-	-	_	-	_	-	_	-	_
	40	55	41.5	7K	28*		-	-	-		-	-	-	-	-
	19	31	56	8D	50*		-	-	-		-	-	-	-	-
40.5	23	34	56	8E	72*	-	-	-	-	-		-		-	
48.5 mm	27	37.5	56	8H	60*	-	_	-	-		_	-	_	-	-
	33 37	48 54	56 56	8J 8L	48* 25*		- -		_		_		_		- -
	35	50	57	9F	25*		_	_			_	_	_	_	
52.5 mm	45	55	57	9H	20*		_	_	_		_	-	_	_	-
	45	65	57	9J	20*	-	-	-	-	-		-	-	-	-

for 2-inch transport pitches.
 TPS (Tray-Packing-System). Plate versions may have different packing units.
 Samples and pre-production needs on request.

Moulded versions. Rights reserved to amend design data without prior notification.

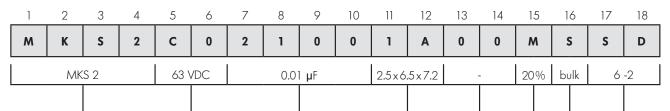
WIMA Part Number System

A WIMA part number consists of 18 digits and is composed as follows:

Field 1 - 4: Type description

Field 5 - 6: Rated voltage

Field 7 - 10: Capacitance


Field 11 - 12: Size and PCM

Field 13 - 14: Version code (e.g. Snubber versions)

Field 15: Capacitance tolerance

Field 16: Packing

Field 17 - 18: Lead length (untaped)

]				
Type descrip	tion:	Rated voltage:	Capacitance:	Size:	Tolerance:
SMD-PET	= SMDT	2.5 VDC = A1	22 pF = 0022	$4.8 \times 3.3 \times 3$ Size $1812 = KA$	20% = M
SMD-PPS	= SMDI	4 VDC = A2	47 pF = 0047	$4.8 \times 3.3 \times 4$ Size 1812 = KB	10% = K
FKP 02	= FKPO	14 VDC = A3	100 pF = 0100	$5.7 \times 5.1 \times 3.5$ Size $2220 = QA$	5% = J
MKS 02	=MKS0	28 VDC = A4	150 pF = 0150	$5.7 \times 5.1 \times 4.5$ Size $2220 = QB$	2.5% = H
FKS 2	= FKS2	40 VDC = A5	220 pF = 0220	$7.2 \times 6.1 \times 3$ Size $2824 = TA$	1% = E
FKP 2	= FKP2	5 VDC = A6	330 pF = 0330	$7.2 \times 6.1 \times 5$ Size 2824 = TB	
MKS 2	=MKS2	50 VDC = B0	470 pF = 0470	$10.2 \times 7.6 \times 5$ Size $4030 = VA$	
MKP 2	=MKP2	63 VDC = C0	680 pF = 0680	$12.7 \times 10.2 \times 6$ Size $5040 = XA$	
FKS 3	= FKS3	100 VDC = D0	1000 pF = 1100	$15.3 \times 13.7 \times 7$ Size $6054 = YA$	Packing:
FKP 3	= FKP3	160 VDC = E0	1500 pF = 1150	$2.5 \times 7 \times 4.6 \text{ PCM } 2.5 = 0B$	AMMO H16.5 $340 \times 340 = A$
MKS 4	=MKS4	250 VDC = FO	2200 pF = 1220	$3 \times 7.5 \times 4.6 \text{ PCM } 2.5 = 0 \text{C}$	AMMO H16.5 $490 \times 370 = B$
MKP 4	=MKP4	400 VDC = G0	3300 pF = 1330	$2.5 \times 6.5 \times 7.2 \text{ PCM} 5 = 1 \text{A}$	AMMO H18.5 $340 \times 340 = C$
MKP 10	=MKP1	450 VDC = H0	4700 pF = 1470	$3 \times 7.5 \times 7.2 \text{ PCM} 5 = 1B$	AMMO H18.5 $490 \times 370 = D$
FKP 4	= FKP4	600 VDC = 10	6800 pF = 1680	$2.5 \times 7 \times 10 \text{ PCM} 7.5 = 2A$	REEL H16.5 360 = F
FKP 1	= FKP1	630 VDC = J0	$0.01 \mu F = 2100$	$3 \times 8.5 \times 10 \text{ PCM} 7.5 = 2B$	REEL H16.5 500 = H
MKP-X2	= MKX2	700 VDC = KO	$0.022 \mu F = 2220$	$3 \times 9 \times 13 \text{ PCM } 10 = 3A$	REEL H18.5 360 = I
MKP-X2 R	= MKXR	800 VDC = 10	$0.047 \mu F = 2470$	$4 \times 9 \times 13 \text{ PCM } 10 = 3C$	REEL H18.5 500 = J
MKP-Y2	=MKY2	850 VDC = M0	$0.1 \mu F = 3100$	$5 \times 11 \times 18 \text{ PCM } 15 = 4B$	ROLL H16.5 = N
MP 3-X2	=MPX2	900 VDC = N0	$0.22 \mu F = 3220$	$6 \times 12.5 \times 18 \text{ PCM } 15 = 4C$	ROLL H18.5 = 0
MP 3-X1	=MPX1	1000 VDC = O1	$0.47 \mu F = 3470$	$5 \times 14 \times 26.5 \text{ PCM } 22.5 = 5A$	BLISTER W12 180 = P
MP 3-Y2	=MPY2	1100 VDC = P0	$1 \mu F = 4100$	$6 \times 15 \times 26.5 \text{ PCM } 22.5 = 5B$	BLISTER W12 330 = Q
MP 3R-Y2	= MPRY	1200 VDC = Q0	$2.2 \mu F = 4220$	$9 \times 19 \times 31.5 \text{ PCM } 27.5 = 6A$	BLISTER W16 330 = R
Snubber MKP		1250 VDC = R0	$4.7 \mu F = 4470$	$11 \times 21 \times 31.5 \text{ PCM} 27.5 = 6B$	BLISTER W24 330 = T
Snubber FKP	= SNFP	1500 VDC = S0	$10 \mu F = 5100$	$9 \times 19 \times 41.5 \text{ PCM} 37.5 = 7A$	Bulk/TPS Standard = S
GTO MKP	= GTOM	1600 VDC = T0	$22 \mu F = 5220$	$11 \times 22 \times 41.5 \text{ PCM} 37.5 = 7B$	
DC-LINK MKP		2000 VDC = U0	$47 \mu F = 5470$	94 x 49 x 182 DCH_ = H0	
DC-LINK MKP		2500 VDC = V0 3000 VDC = W0	$100 \mu F = 6100$ $220 \mu F = 6220$	$94 \times 77 \times 182 \text{ DCH}_{-} = \text{H1}$	
DC-LINK MKP		4000 VDC = VV 4000 VDC = X	$220 \mu F = 6220$ 1 F = A010	l	
DC-LINK MKP		6000 VDC = X0	2.5 F = A010		1
DC-LINK HC	= DCH_	250 VAC = 0 V	50 F = A500	Version code:	
DC-LINK HY	= DCHY	275 VAC = 0 VV $275 VAC = 1 VV$	100 F = 8100	Standard = 00	Lead length (untaped)
SuperCap C	= SCSC	300 VAC = 2W	110 F = B110	Version A1 = 1A	$3.5 \pm 0.5 = C9$
SuperCap MC		400 VAC = 3VV	600 F = B600	Version A1.1.1 = 1B	6.2 = SD
SuperCap C6		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1200 F = C120	Version A2 = $2A$	$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$
SuperCap R	= SCSR	500 VAC = 5W			
SuperCap MR					

The data on this page is not complete and serves only to explain the part number system. Part number information is listed on the pages of the respective WIMA range.