

Order code	Manufacturer code	Description
73-4282	ATMEGA32-16PU	ATMEGA32-16PU 8-BIT MICRO 32K DIL-40 (RC

	Page 1 of
The enclosed information is believed to be correct, Information may change 'without notice' due to	Revision A
product improvement. Users should ensure that the product is suitable for their use. E. & O. E.	12/12/2006

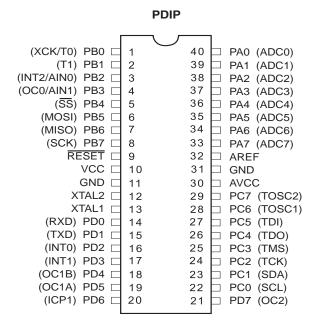
Technical: 01206 835555 Tech@rapidelec.co.uk

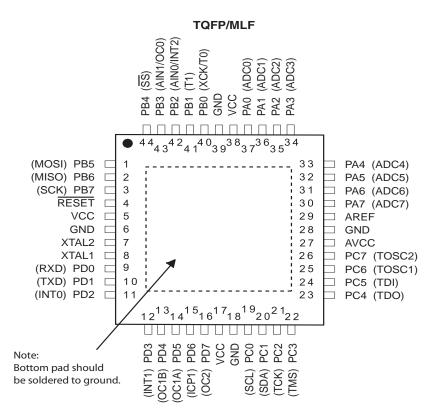
Features

- High-performance, Low-power AVR[®] 8-bit Microcontroller
- Advanced RISC Architecture
 - 131 Powerful Instructions Most Single-clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16 MHz
 - On-chip 2-cycle Multiplier
- Nonvolatile Program and Data Memories
 - 32K Bytes of In-System Self-Programmable Flash Endurance: 10,000 Write/Erase Cycles
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
 - 1024 Bytes EEPROM
 - Endurance: 100,000 Write/Erase Cycles
 - 2K Byte Internal SRAM
 - Programming Lock for Software Security
- JTAG (IEEE std. 1149.1 Compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Four PWM Channels
 - 8-channel, 10-bit ADC
 - 8 Single-ended Channels
 - 7 Differential Channels in TQFP Package Only
 - 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
 - Byte-oriented Two-wire Serial Interface
 - Programmable Serial USART
 - Master/Slave SPI Serial Interface
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated RC Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby
- I/O and Packages
 - 32 Programmable I/O Lines
 - 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF
- Operating Voltages
 - 2.7 5.5V for ATmega32L
 - 4.5 5.5V for ATmega32
- Speed Grades
 - 0 8 MHz for ATmega32L
 - 0 16 MHz for ATmega32
- Power Consumption at 1 MHz, 3V, 25°C for ATmega32L
 - Active: 1.1 mA
 - Idle Mode: 0.35 mA
 - Power-down Mode: < 1 µA</p>

8-bit **AVR**[®] Microcontroller with 32K Bytes In-System Programmable Flash

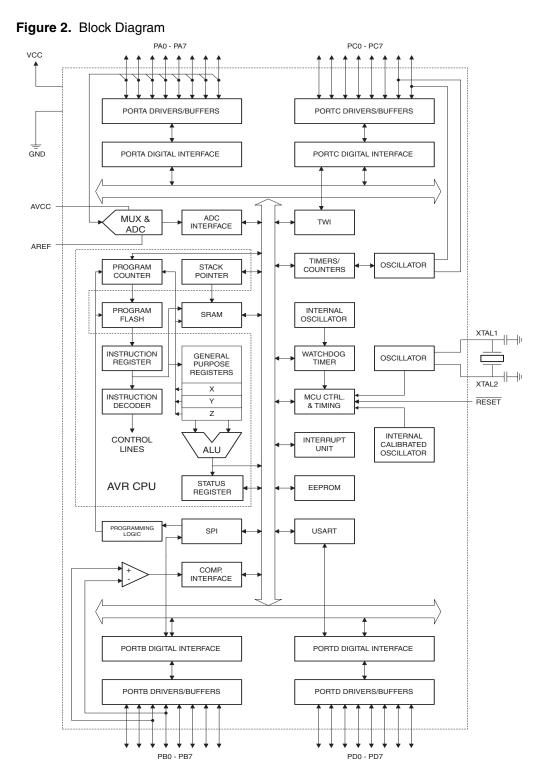
ATmega32 ATmega32L


Summary



Pin Configurations

Figure 1. Pinout ATmega32



Overview

Block Diagram

The ATmega32 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega32 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega32 provides the following features: 32K bytes of In-System Programmable Flash Program memory with Read-While-Write capabilities, 1024 bytes EEPROM, 2K byte SRAM, 32 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, three flexible Timer/Counters with compare modes, Internal and External Interrupts, a serial programmable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable gain (TQFP package only), a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next External Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel's high density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega32 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications.

The ATmega32 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Pin Descriptions

VCC	Digital supply voltage.
GND	Ground.
Port A (PA7PA0)	Port A serves as the analog inputs to the A/D Converter.
	Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B (PB7PB0)	Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
	Port B also serves the functions of various special features of the ATmega32 as listed on page 57.
Port C (PC7PC0)	Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.
	The TD0 pin is tri-stated unless TAP states that shift out data are entered.
	Port C also serves the functions of the JTAG interface and other special features of the ATmega32 as listed on page 60.
Port D (PD7PD0)	Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
	Port D also serves the functions of various special features of the ATmega32 as listed on page 62.
RESET	Reset Input. A low level on this pin for longer than the minimum pulse length will gener- ate a reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page 37. Shorter pulses are not guaranteed to generate a reset.
XTAL1	Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
XTAL2	Output from the inverting Oscillator amplifier.
AVCC	AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.
AREF	AREF is the analog reference pin for the A/D Converter.
Resources	A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

ATmega32(L) 6

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F (\$5F)	SREG	1	Т	Н	S	V	N	Z	С	10
\$3E (\$5E)	SPH	_	_	_	-	SP11	SP10	SP9	SP8	10
\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	12
\$3C (\$5C)	OCR0		0 Output Compar		014	015	012	011	010	82
\$3B (\$5B)	GICR	INT1	INT0	INT2	_	_	_	IVSEL	IVCE	47,67
\$3A (\$5A)	GIFR	INTF1	INTFO	INTF2	_	_	_	-	-	68
\$39 (\$59)	TIMSK	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	82, 112, 130
\$38 (\$58)	TIFR	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOIE1	OCIEU OCF0	TOVO	83, 113, 130
\$37 (\$57)	SPMCR	SPMIE	RWWSB	ICFT	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	248
	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	FGERS	TWIE	177
\$36 (\$56) \$35 (\$55)	MCUCR	SE	SM2	SM1	SM0	ISC11	ISC10	ISC01	ISC00	32, 66
\$35 (\$55)	MCUCSR	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	40, 67, 228
		FOC0	WGM00							
\$33 (\$53)	TCCR0			COM01	COM00	WGM01	CS02	CS01	CS00	80
\$32 (\$52)	TCNT0	Timer/Counter								82
\$31 ⁽¹⁾ (\$51) ⁽¹⁾	OSCCAL		bration Register							30
ADD (450)	OCDR	On-Chip Debu		10700		10115	5115	2020	50540	224
\$30 (\$50)	SFIOR	ADTS2	ADTS1	ADTS0	-	ACME	PUD	PSR2	PSR10	56,85,131,198,218
\$2F (\$4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10	107
\$2E (\$4E)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	110
\$2D (\$4D)	TCNT1H		1 – Counter Regi	v ,						111
\$2C (\$4C)	TCNT1L		1 – Counter Regi	-						111
\$2B (\$4B)	OCR1AH			are Register A Hi	• •					111
\$2A (\$4A)	OCR1AL			are Register A Lo	*					111
\$29 (\$49)	OCR1BH			are Register B Hi						111
\$28 (\$48)	OCR1BL			are Register B Lo						111
\$27 (\$47)	ICR1H			Register High By						112
\$26 (\$46)	ICR1L			Register Low By			T	1	1	112
\$25 (\$45)	TCCR2	FOC2	WGM20	COM21	COM20	WGM21	CS22	CS21	CS20	125
\$24 (\$44)	TCNT2	Timer/Counter	. ,							127
\$23 (\$43)	OCR2	Timer/Counter	2 Output Compar	e Register		1	1	1	1	127
\$22 (\$42)	ASSR	-	-	-	-	AS2	TCN2UB	OCR2UB	TCR2UB	128
\$21 (\$41)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	42
\$20 ⁽²⁾ (\$40) ⁽²⁾	UBRRH	URSEL	-	-	-		UBR	R[11:8]	1	164
φ20 (ψ10)	UCSRC	URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	162
\$1F (\$3F)	EEARH	-	-	-	-	-	-	EEAR9	EEAR8	19
\$1E (\$3E)	EEARL	EEPROM Add	ress Register Lov	v Byte						19
\$1D (\$3D)	EEDR	EEPROM Data	a Register							19
\$1C (\$3C)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	19
\$1B (\$3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	64
\$1A (\$3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	64
\$19 (\$39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	64
\$18 (\$38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	64
\$17 (\$37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	64
\$16 (\$36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	65
\$15 (\$35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	65
\$14 (\$34)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	65
\$13 (\$33)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	65
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	65
\$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	65
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	65
\$0F (\$2F)	SPDR	SPI Data Reg	ister							138
\$0E (\$2E)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	138
\$0D (\$2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	136
\$0C (\$2C)	UDR	USART I/O D	ata Register							159
\$0B (\$2B)	UCSRA	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM	160
\$0A (\$2A)	UCSRB	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	161
\$09 (\$29)	UBRRL		Rate Register Lo							164
\$08 (\$28)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	199
τ (Ψ=0)	ADMUX	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	214
			ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	214
\$07 (\$27)		ADHN								210
\$07 (\$27) \$06 (\$26)	ADCSRA	ADEN ADC Data Rec								217
\$07 (\$27) \$06 (\$26) \$05 (\$25)	ADCSRA ADCH	ADC Data Reg	gister High Byte					•		217 217
\$07 (\$27) \$06 (\$26)	ADCSRA	ADC Data Reg ADC Data Reg								217 217 179

Register Summary

ATmega32(L)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$01 (\$21)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	_	TWPS1	TWPS0	178
\$00 (\$20)	TWBR	Two-wire Serial Interface Bit Rate Register						177		

Notes: 1. When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this address. Refer to the debugger specific documentation for details on how to use the OCDR Register.

2. Refer to the USART description for details on how to access UBRRH and UCSRC.

3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

4. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND	LOGIC INSTRUCTION	S			•
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:RdI ← Rdh:RdI + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \vee Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	Rd ← Rd v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow \$FF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (\$FF - K)$		
INC DEC	Rd Rd	Increment	$Rd \leftarrow Rd + 1$ $Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Decrement Test for Zero or Minus	$Rd \leftarrow Rd - 1$ Rd $\leftarrow Rd \bullet Rd$	Z,N,V Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$ $Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow SFF$	None	1
MUL	Rd, Rr	Multiply Unsigned	$Ru \leftarrow \Im Fr$ R1:R0 \leftarrow Rd x Rr	Z,C	2
MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
BRANCH INSTRU		- Haddonar manapy eigned mar energined		2,0	-
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
JMP	k	Direct Jump	$PC \leftarrow k$	None	3
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3
CALL	k	Direct Subroutine Call	$PC \leftarrow k$	None	4
RET		Subroutine Return	PC ← Stack	None	4
RETI		Interrupt Return	PC ← Stack	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd - Rr - C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC \leftarrow PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if $(C = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
	k	Branch if Lower	if $(C = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRLO		Bronch if Minuc			1/2
BRMI	k	Branch if Minus	if $(N = 1)$ then $PC \leftarrow PC + k + 1$	None	
BRMI BRPL	k k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRMI BRPL BRGE	k k k	Branch if Plus Branch if Greater or Equal, Signed	$\begin{array}{l} \mbox{if } (N=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V = 0) \mbox{ then } PC \leftarrow PC + k + 1 \end{array}$	None None	1/2 1/2
BRMI BRPL BRGE BRLT	k k k k	Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed	$\begin{array}{l} \mbox{if } (N=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V=1) \mbox{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None	1/2 1/2 1/2
BRMI BRPL BRGE BRLT BRHS	k k k k k	Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set	$\begin{array}{l} \mbox{if } (N=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V=1) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (H=1) \mbox{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None None	1/2 1/2 1/2 1/2
BRMI BRPL BRGE BRLT BRHS BRHC	k k k k k k k	Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set Branch if Half Carry Flag Cleared	$\begin{array}{l} \mbox{if } (N=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V=1) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (H=1) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (H=0) \mbox{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None None None	1/2 1/2 1/2 1/2 1/2 1/2
BRMI BRPL BRGE BRLT BRHS BRHC BRTS	k k k k k k k k	Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set Branch if Half Carry Flag Cleared Branch if T Flag Set	$\begin{array}{l} \mbox{if } (N=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V=1) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (H=1) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (H=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (T=1) \mbox{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None None None None	1/2 1/2 1/2 1/2 1/2 1/2 1/2
BRMI BRPL BRGE BRLT BRHS BRHC	k k k k k k k	Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set Branch if Half Carry Flag Cleared	$\begin{array}{l} \mbox{if } (N=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V=0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V=1) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (H=1) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (H=0) \mbox{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None None None	1/2 1/2 1/2 1/2 1/2 1/2

ATmega32(L)

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
DATA TRANSFER I	NSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
	Rd, Y Rd, Y+	Load Indirect Load Indirect and Post-Inc.	$Rd \leftarrow (Y)$ $Rd \leftarrow (Y), Y \leftarrow Y + 1$	None None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect and Tre-Dec.	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow \operatorname{Rr}$	None	2
ST ST	Z+, Rr -Z, Rr	Store Indirect and Post-Inc. Store Indirect and Pre-Dec.	$(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$	None None	2
STD	Z+q,Rr	Store Indirect and Fie-Dec. Store Indirect with Displacement	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$ $(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	$(k) \leftarrow Rr$	None	2
LPM	N, NI	Load Program Memory	$R0 \leftarrow (Z)$	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	Stack ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← Stack	None	2
BIT AND BIT-TEST		1	1		1
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR ROL	Rd Rd	Logical Shift Right Rotate Left Through Carry	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$ $Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	SREG(s) \leftarrow 1	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	с	1
CLC		Clear Carry	C ← 0	С	1
SEN	-	Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI CLI		Global Interrupt Enable Global Interrupt Disable	$I \leftarrow 1$ $I \leftarrow 0$		1
SES		Set Signed Test Flag	$S \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	$T \leftarrow 0$	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1

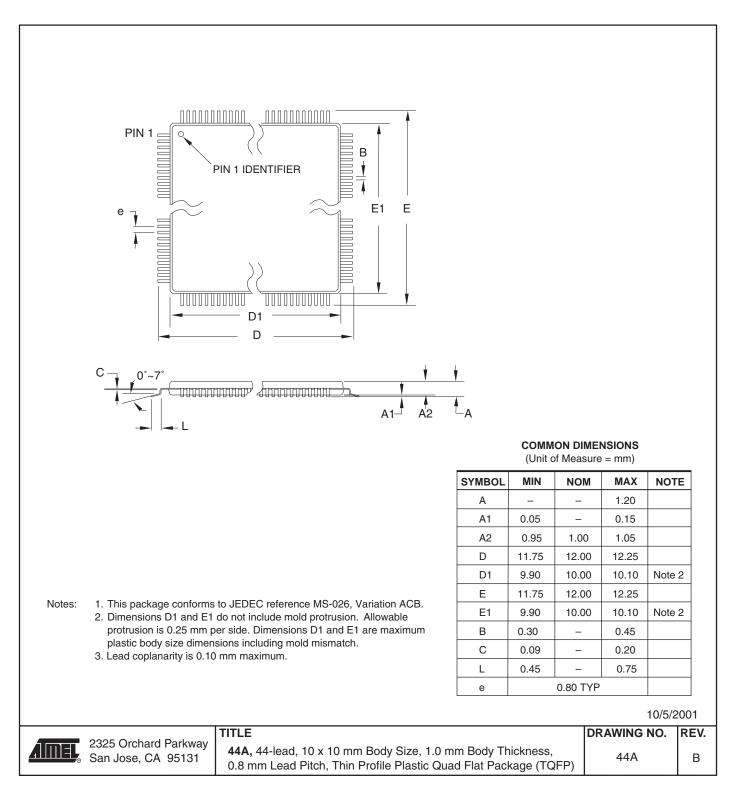
Mnemonics	Operands	Description	Operation	Flags	#Clocks
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
MCU CONTROL	INSTRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-Chip Debug Only	None	N/A

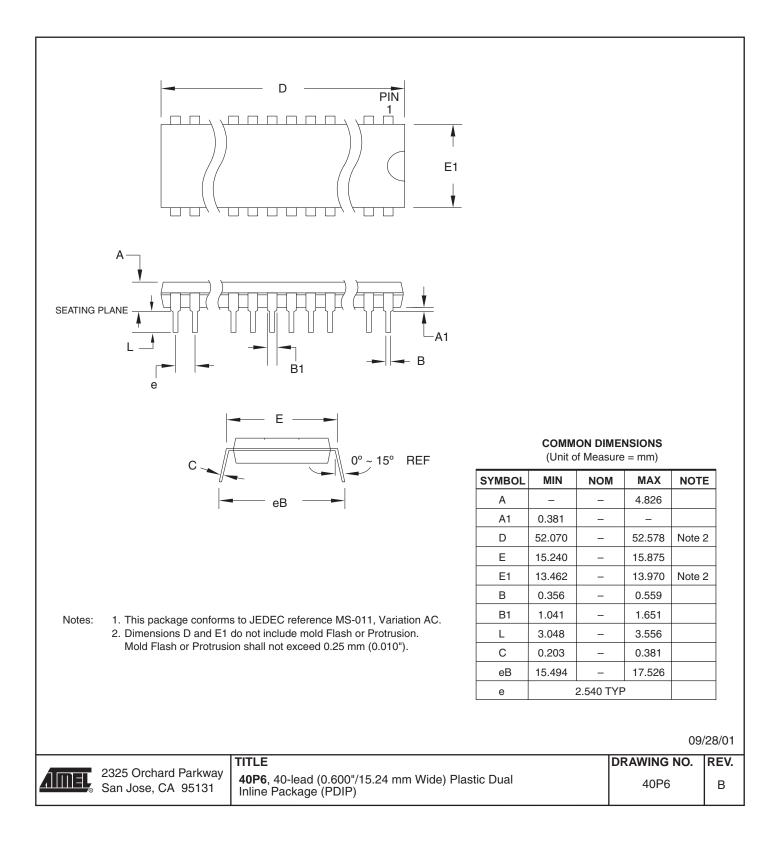
Speed (MHz)	Power Supply	Ordering Code	Package ⁽¹⁾	Operational Range
		ATmega32L-8AC ATmega32L-8PC ATmega32L-8MC	44A 40P6 44M1	Commercial (0°C to 70°C)
8	2.7 - 5.5V	ATmega32L-8AI ATmega32L-8PI ATmega32L-8MI ATmega32L-8AU ⁽²⁾ ATmega32L-8PU ⁽²⁾ ATmega32L-8MU ⁽²⁾	44A 40P6 44M1 44A 40P6 44M1	Industrial (-40°C to 85°C)
		ATmega32-16AC ATmega32-16PC ATmega32-16MC	44A 40P6 44M1	Commercial (0°C to 70°C)
16	4.5 - 5.5V	ATmega32-16AI ATmega32-16PI ATmega32-16MI ATmega32-16AU ⁽²⁾ ATmega32-16PU ⁽²⁾ ATmega32-16MU ⁽²⁾	44A 40P6 44M1 44A 40P6 44M1	Industrial (-40°C to 85°C)

Ordering Information

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

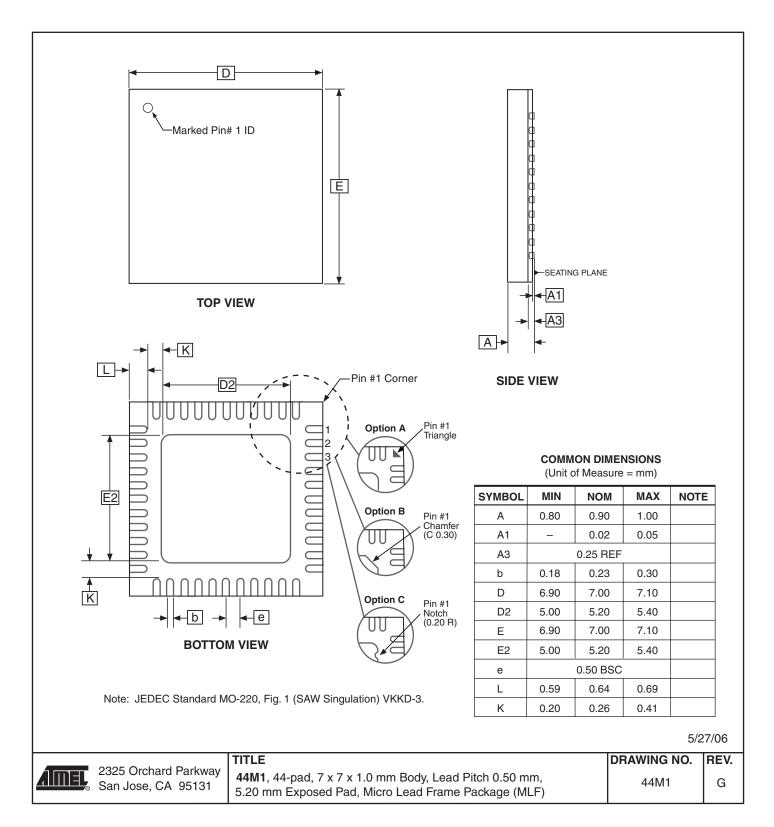
2. Pb-free packaging alternative. Complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.


	Package Type
44 A	44-lead, 10 x 10 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)
40P6	40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)
44M1	44-pad, 7 x 7 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)


Packaging Information

44A

12 ATmega32(L)


40P6

44M1

Errata

ATmega32, rev. A to E

- First Analog Comparator conversion may be delayed
- Interrupts may be lost when writing the timer registers in the asynchronous timer
- IDCODE masks data from TDI input

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising $V_{\rm CC},$ the first Analog Comparator conversion will take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable theAnalog Comparator before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by all-ones during Update-DR.

Problem Fix / Workaround

- If ATmega32 is the only device in the scan chain, the problem is not visible.
- Select the Device ID Register of the ATmega32 by issuing the IDCODE instruction or by entering the Test-Logic-Reset state of the TAP controller to read out the contents of its Device ID Register and possibly data from succeeding devices of the scan chain. Issue the BYPASS instruction to the ATmega32 while reading the Device ID Registers of preceding devices of the boundary scan chain.
- If the Device IDs of all devices in the boundary scan chain must be captured simultaneously, the ATmega32 must be the fist device in the chain.

Datasheet Revision History

Changes from Rev. 2503I-04/06 to Rev. 2503J-10/06

Changes from Rev. 2503H-03/05 to Rev. 2503I-04/06

Changes from Rev. 2503G-11/04 to Rev. 2503H-03/05 Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

- 1. Updated "Fast PWM Mode" on page 99.
- 2. Updated Table 38 on page 80, Table 40 on page 81, Table 45 on page 108, Table 47 on page 109, Table 50 on page 125 and Table 52 on page 126.
- 3. Updated typo in table note 6 in "DC Characteristics" on page 287.
- 4. Updated "Errata" on page 336.
- 1. Updated Figure 1 on page 2.
- 2. Added "Resources" on page 5.
- 3. Added note to "Timer/Counter Oscillator" on page 31.
- 4. Updated "Serial Peripheral Interface SPI" on page 132.
- 5. Updated note in "Bit Rate Generator Unit" on page 175.
- 6. Updated Table 86 on page 218.
- 7. Updated "DC Characteristics" on page 287.
- 1. MLF-package alternative changed to "Quad Flat No-Lead/Micro Lead Frame Package QFN/MLF".
- 2. Updated "Electrical Characteristics" on page 287
- 3. Updated "Ordering Information" on page 11.
- Changes from Rev. 2503F-12/03 to Rev. 2503G-11/04
- 1. "Channel" renamed "Compare unit" in Timer/Counter sections, ICP renamed ICP1.
- 2. Updated Table 7 on page 29, Table 15 on page 37, Table 81 on page 207, Table 114 on page 272, Table 115 on page 273, and Table 118 on page 289.
- 3. Updated Figure 1 on page 2, Figure 46 on page 100.
- 4. Updated "Version" on page 226.
- 5. Updated "Calibration Byte" on page 258.
- 6. Added section "Page Size" on page 258.
- 7. Updated "ATmega32 Typical Characteristics" on page 296.
- 8. Updated "Ordering Information" on page 11.

Changes from Rev. 2503E-09/03 to Rev. 2503F-12/03

Changes from Rev. 2503D-02/03 to Rev. 2503E-09/03

Changes from Rev. 2503C-10/02 to Rev. 2503D-02/03

- 1. Updated "Calibrated Internal RC Oscillator" on page 29.
- 1. Updated and changed "On-chip Debug System" to "JTAG Interface and Onchip Debug System" on page 35.
- 2. Updated Table 15 on page 37.
- 3. Updated "Test Access Port TAP" on page 219 regarding the JTAGEN fuse.
- 4. Updated description for Bit 7 JTD: JTAG Interface Disable on page 228.
- 5. Added a note regarding JTAGEN fuse to Table 104 on page 257.
- 6. Updated Absolute Maximum Ratings* , DC Characteristics and ADC Characteristics in "Electrical Characteristics" on page 287.
- 7. Added a proposal for solving problems regarding the JTAG instruction IDCODE in "Errata" on page 15.
- 1. Added EEAR9 in EEARH in "Register Summary" on page 6.
- 2. Added Chip Erase as a first step in "Programming the Flash" on page 284 and "Programming the EEPROM" on page 285.
- 3. Removed reference to "Multi-purpose Oscillator" application note and "32 kHz Crystal Oscillator" application note, which do not exist.
- 4. Added information about PWM symmetry for Timer0 and Timer2.
- 5. Added note in "Filling the Temporary Buffer (Page Loading)" on page 251 about writing to the EEPROM during an SPM Page Load.
- 6. Added "Power Consumption" data in "Features" on page 1.
- 7. Added section "EEPROM Write During Power-down Sleep Mode" on page 22.
- 8. Added note about Differential Mode with Auto Triggering in "Prescaling and Conversion Timing" on page 204.
- 9. Updated Table 89 on page 232.
- 10.Added updated "Packaging Information" on page 12.
- 1. Updated the "DC Characteristics" on page 287.

Changes from Rev. 2503B-10/02 to Rev. 2503C-10/02

Changes from Rev. 2503A-03/02 to Rev. 2503B-10/02

- 1. Canged the endurance on the Flash to 10,000 Write/Erase Cycles.
- 2. Bit nr.4 ADHSM in SFIOR Register removed.

- 3. Added the section "Default Clock Source" on page 25.
- 4. When using External Clock there are some limitations regards to change of frequency. This is described in "External Clock" on page 31 and Table 117 on page 289.
- 5. Added a sub section regarding OCD-system and power consumption in the section "Minimizing Power Consumption" on page 34.
- 6. Corrected typo (WGM-bit setting) for:
 - "Fast PWM Mode" on page 75 (Timer/Counter0)
 - "Phase Correct PWM Mode" on page 76 (Timer/Counter0)
 - "Fast PWM Mode" on page 120 (Timer/Counter2)
 - "Phase Correct PWM Mode" on page 121 (Timer/Counter2)
- 7. Corrected Table 67 on page 164 (USART).
- 8. Updated V_{IL} , I_{IL} , and I_{IH} parameter in "DC Characteristics" on page 287.
- 9. Updated Description of OSCCAL Calibration Byte.

In the datasheet, it was not explained how to take advantage of the calibration bytes for 2, 4, and 8 MHz Oscillator selections. This is now added in the following sections:

Improved description of "Oscillator Calibration Register – OSCCAL" on page 30 and "Calibration Byte" on page 258.

- 10. Corrected typo in Table 42.
- 11. Corrected description in Table 45 and Table 46.
- 12. Updated Table 118, Table 120, and Table 121.
- 13. Added "Errata" on page 15.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. ATMEL[®], logo and combinations thereof, AVR[®], Everywhere You Are[®] and AVR Studio[®] are registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.