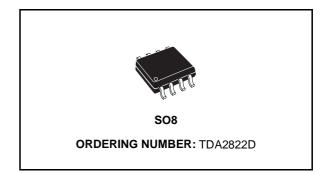


DATA SHEET

Order code	Manufacturer code	Description
82-0690	n/a	TDA2822D 1W+1W STEREO AUDIO AMPLIFIER SO

	Page 1 of 7
The enclosed information is believed to be correct, Information may change 'without notice' due to	Revision A
product improvement. Users should ensure that the product is suitable for their use. E. & O. E.	04/07/2003

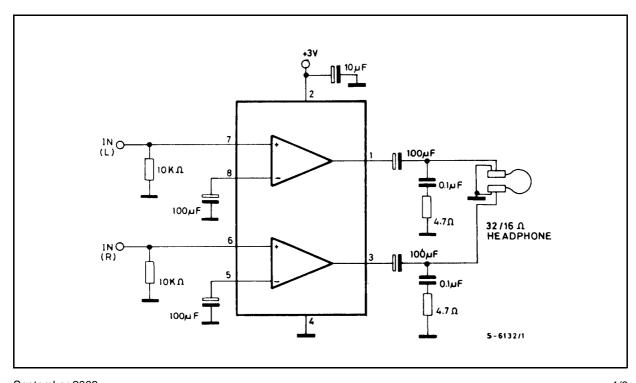
Sales: 01206 751166 Technical: 01206 835555 Fax: 01206 7551188 Sales@rapidelec.co.uk Tech@rapidelec.co.uk www.rapidelectronics.co.uk



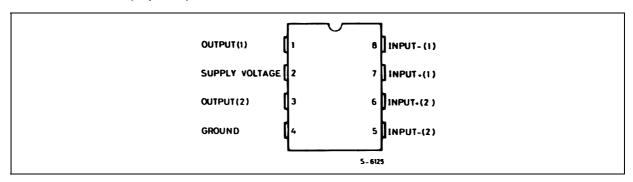
DUAL LOW-VOLTAGE POWER AMPLIFIER

- SUPPLY VOLTAGE DOWN TO 1.8V
- LOWCROSSOVER DISTORTION
- LOW QUIESCENT CURRENT
- BRIDGE OR STEREO CONFIGURATION

DESCRIPTION


The TDA2822D is a monolithic integrated circuit in 8 lead (SO-8) package. It is intended for use as dual audio power amplifier in portable cassette players, radios and CD players

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
Vs	Supply Voltage	15	V
lo	Peak Output	1	Α
P _{tot}	Total Power Dissipation T _{amb} = 50°C	0.5	W
T_{stg}, T_j	Storage and Junction Temperature	-40 to 150	°C

APPLICATION CIRCUIT

September 2003 1/6

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Description	Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Max	200	°C/W

Figure 1: Stereo Application and Test Circuit

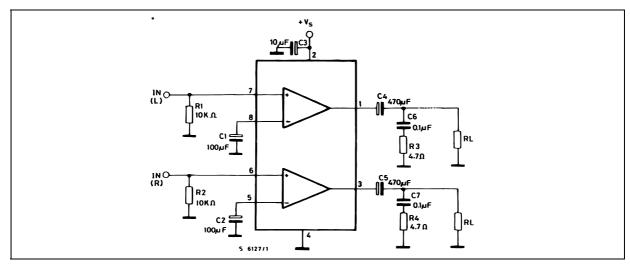
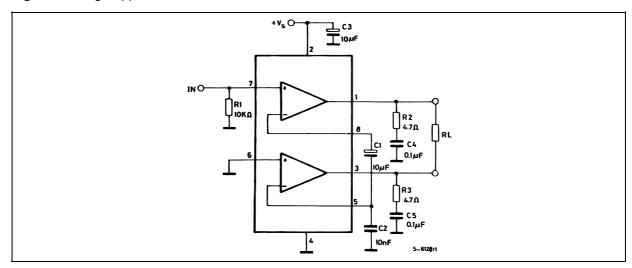
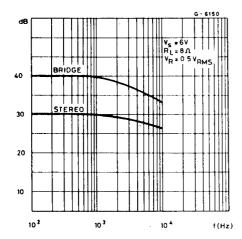
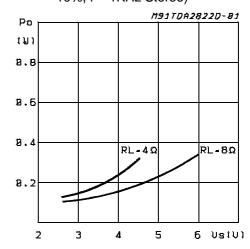



Figure 2: Bridge Application and Test Circuit

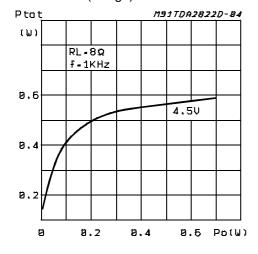
2/6


ELECTRICAL CHARACTERISTICS ($V_S = 6V$; $T_{amb} = 25$ °C, unless otherwise specified. STEREO (Test circuit of fig. 1).

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
Vs	Supply Voltage			1.8		15	V
l _d	Total Quiescent Drain Current					15	mA
Vo	Quiescent Output Voltage				2.7		V
		$V_S = 3V$			1.2		V
l _b	Input Bias Current				100		nA
Po	Output Power (each channel) (f = 1KHz, d = 10%)	R _L = 32Ω	$V_S = 9V$ $V_S = 6V$ $V_S = 4.5V$ $V_S = 3V$ $V_S = 2V$		300 120 60 20 5		mW
		$R_L = 16\Omega$	V _S = 6V	170	220		mW
		$R_L = 8\Omega$	V _S = 6V	300	380		mW
		$R_L = 4\Omega$	V _S = 4.5V V _S = 3V		320 110		mW mW
d	Distortion	$R_L = 32\Omega$	P _O = 40mW		0.2		%
		$R_L = 16\Omega$	P _O = 75mW		0.2		%
		$R_L = 8\Omega$	P _O = 150mW		0.2		%
G_V	Closed Loop Voltage Gain	f = 1KHz		36	39	41	dB
ΔG_V	Channel Balance					±1	dB
Ri	Input Resistance	f = 1KHz		100			ΚΩ
e _N	Total Input Noise	$R_s = 10k\Omega$	B = Curve A		2		μV
		$R_s = 10k\Omega$	B = 22Hz to 22KHz		2.5		μV
SVR	Supply Voltage Rejection	f = 100Hz	$C1 = C2 = 100 \mu F$	24	30		dB
Cs	Channel Separation	f = 1KHz			50		dB


BRIDGE (Test circuit of fig.2)

Vs	Supply Voltage			1.8		15	V
I_d	Total Quiescent Drain Current	R _L = ∞				15	mA
Vos	Output Offset Voltage (between the outputs)	$R_L = 8\Omega$				±80	mV
I _b	Input Bias Current				100		nA
Po	Output Power (f = 1KHz, d = 10%)	R _L = 32Ω	$V_S = 9V$ $V_S = 6V$ $V_S = 4.5V$ $V_S = 3V$ $V_S = 2V$	320 50	1000 400 200 65 8		mW
		$R_L = 16\Omega$	$V_S = 6V$ $V_S = 3V$		800 120		mW mW
		$R_L = 8\Omega$	$V_S = 4.5V$ $V_S = 3V$		700 220		mW mW
		$R_L = 4\Omega$	$V_S = 3V$ $V_S = 2V$		350 80		mW mW
d	Distortion	$R_L = 8\Omega$ $P_O = 0.5W$ $f = 1KHz$			0.2		%
G_V	Closed Loop Voltage Gain	f = 1KHz			39		dB
Ri	Input Resistance	f = 1KHz		100			ΚΩ
e _N	Total Input Noise	$R_s = 10k\Omega$ B = Curve A			2.5		μV
		$R_s = 10k\Omega$ B = 22Hz to 22KHz			3		μV
SVR	Supply Voltage Rejection	f = 100Hz			40		dB
В	Power Bandwidth (-3dB)	$R_L = 8\Omega$	P _O = 1W		120		KHz


Figure 3: Supply Voltage Rejection vs. Frequency

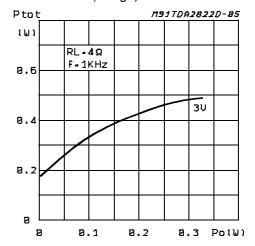
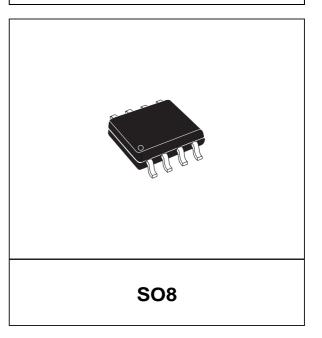
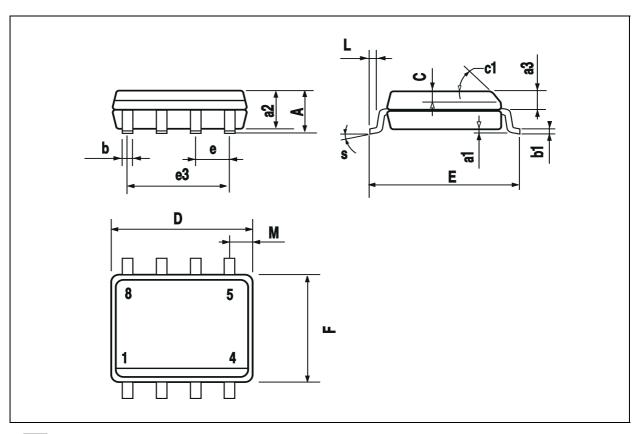

Figure 4: Output Power vs. Supply Voltage (THD = 10%, f = 1KHz Stereo)

Figure 5: Total Power Dissipation vs. Output Power (Bridge)

Figure 6: Total Power Dissipation vs. Output Power (Bridge)




4

DIM.		mm		inch			
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
а3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1			45° ((typ.)			
D (1)	4.8		5.0	0.189		0.197	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F (1)	3.8		4.0	0.15		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S	·		8° (n	nax.)		·	

(1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

OUTLINE AND MECHANICAL DATA

47/

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

4