

Contents

Chapter 4: Process Structure - Expansion of Smart
Supermarket

4.1. Sequence and Loop Structure
- Solution of Smart Supermarket Expansion /88

4.2. Branch Structure (1) - Solution of Tile Classification /104

4.3. Branch Structure (2) - Solution of Project Completion
Acceptance /113

Chapter 2: Motion Control - Smart Porter

2.1. Sprite Motion - Robot Drawing Square /16

2.2. Robot Motion - Cargo Handling /35

Chapter 1: Introduction to Programming - John's Smart
Supermarket

Introduction to Programming - Smart Assistant /02

Chapter 3: Data and Operation - Smart Service

3.1. Program Data (1) - Home Delivery Service /47

3.2. Program Data (2) - Store Opening /57

3.3. Data Operation (1) - Holiday Activity (1) /66

3.4. Data Operation (2) - Holiday Activity (2) /80

Chapter 5: Messages and Sensing - Wonderful Circus
Performance

5.1. Message Instruction - Monkey Drumming and Elephant
Changing Color /121

5.2. Sensing Instruction - Maze Escape /133

Chapter 6: Comprehensive Project - New Medical Project in the
Town

Auto-Medicine Vending Robot /147

1

- John's Smart Supermarket

The rapid development of science and technology has made artificial
intelligence (AI) gradually become part of our daily life. Now we can see AI
products everywhere, including smartphones, smart watches and smart
cleaning robots. John always wants to open a supermarket. He particularly
expects that his supermarket can provide all kinds of AI products to serve
customers. But he does not understand what instructions enabled these AI
products to complete specific work. Through survey and consultation, John
knows that engineers can program AI products to direct them to complete work.
Programming not only helps AI products complete work, but also makes them
smarter. But what is programming?

In this chapter, we will understand programming software, learn how to
program, and thus start a programming journey!

Learning Target

Chapter 1 Introduction to Programming

- John's Smart Supermarket

 Students will understand DobotBlock software and its
interface.

 Through writing and running programs, students will
develop their interest in learning how to program.

2

- Smart Assistant

1.1.1. Introduction to Programming Software

Boys and girls, to learn programming well, we must grasp some handy
software tools and effective learning methods. Generally, we must write
computer instructions with a programming language. John invited the
programming expert Mr. Lee. According to Lee's introduction, John knows that
the programming software in this textbook is DobotBlock.

As a type of simple graphical programming software, DobotBlock is easy to
operate. By dragging some graphical blocks and combining them according to
a certain logic, we can finish programming. For example, to have Kelly greet
you by saying "Hello!" on the stage, what blocks should we drag and combine?
We just need to combine two blocks, see Figure 1.1.

Program Running Result

Figure 1.1

 Introduction to
Programming

I plan to open a smart
supermarket. I want to complete
some of my work by
programming. Kelly, have you
heard of programming?

It's great! Well, I have. Many
students around me have learned
it. But I cannot program. Let's
study it together!

3

In Figure 1.1, the yellow block and the purple block mean instructions, and the
girl Kelly is a set sprite. We can randomly set this sprite. It can understand and
execute the instructions from the yellow block and the purple block in the
program.

After we select a sprite and write a program by drawing blocks, we can click
the green flag button to run the program. Then, the purple block will instruct
Kelly to show "Hello!" in the bubble form.

1.1.2. Programming Software Interface

There are Menu, Stage, Device, Sprite and Stage List, Block Area, Coding
Area and Tabs on the DobotBlock interface, see Figure 1.2.

Figure 1.2

 Let's find it

 Find and double-click DobotBlock on the computer, and now, we
come to the interface; watch carefully, and do you find anything
new?

 Let's think about it

 Where can we find the block instruction and the sprite in the
programming software?

 Let's do it

 Freely click icons on the interface, read and share them with
others.

4

(1) Menu

We can see File, Edit, Help and Tutorial Center on the DobotBlock interface;
each of them has different menu items for different functions. For example,
there are New, Save, Load from your computer, Save to your computer and
Recent under File, see Figure 1.3.

Figure 1.3

(2) Stage

We can move or interact sprites (or devices) on the Stage, see Figure 1.4.

Do you still remember Kelly? She said hello on the Stage. Yes, we can move or
interact sprites (or devices) on her Stage, see Figure 1.4.

Figure 1.4

5

We can see 6 icons on top of the Stage. Boys and girls, let's guess which is
Start and which is Stop on the left? What do the three stage modes mean on
the right?

(3) Device List

By default, a new item includes a device. For the device list, see Figure 1.5.

 Let's read it

Stage Icons

Icon Name Function

Green flag

button
It starts the program.

 Stop button It stops the running program.

Clear alarm
button

As the connected device gives
an alarm, we can clear the
alarm by clicking this button.

Small stage
mode

It scales down the stage in the
software interface.

Big stage mode

It scales up the stage in the
software interface.

Full screen
control mode

It hides all scripts and
programming tools, and
enlarges the Stage to the full
screen mode.

6

Figure 1.5

(4) Sprite List

By default, a new item includes a sprite. For the sprite list, see Figure 1.6.

 Let's read it

Device List Icon

Icon Name Function

Thumbnail of
the device

Every time we add a device, the
corresponding device thumbnail
appears.

Add a device

Click this button, and we can
come to the device warehouse,
and select the device we want to
add.

Device

controlling
module

We can see connection control,
home, motion control, Linear
Rail, end control and so on in
this module.

7

Figure 1.6

In the sprite control module, we can show or hide this sprite on the stage, or
modify its name, or change its position by modifying X and Y values, or set its
size and direction. For example, Figure 1.7 shows the sprite control module for
the sprite "John (1)".

Figure 1.7

8

(5) Block Area and Coding Area

As shown Figure 1.8, the Block Area is on the left, and the Coding Area is on
the right.

Figure 1.8

Block Area: This area provides blocks necessary for programming, and we can
search for our desired blocks by class and color.

Coding Area: This area is for programming; we can drag blocks to this area to
program.

From the block area in DobotBlock, we see different types of blocks and the
Add Extension button, and different blocks in different modules. A module
includes blocks with the same color, and different modules include blocks with
different colors. We can add different extension modules by clicking Add
Extension, for example, AI extension, music and pen modules.

 Let's do it

 Click the Sprite List in the software, and try adding a sprite "John
(1)".

 Modify the name of the sprite name to "John", and set its size to
60, change the X and Y values to 0, and the direction to 0. Watch
and describe the change in the sprite on the stage.

9

As we use the sprite, the block area is divided into nine modules. Of them, the
Motion module includes blue blocks, and the Looks module includes purple
blocks, see Figure 1.9.

Figure 1.9

To create a program, first drag our desired blocks with a mouse to the coding
area from the block area, and according to needs, then connect and combine
these blocks just as we play puzzles. These connected and combined blocks
are called scripts.

(6) Tabs of Costumes and Backdrop

 Let's do it

 After adding the sprite "John", find the "when the green flag
clicked" block in the Events module and the "say 'Hello!' for 2
seconds" in the Looks module, and connect and combine these
two blocks, see Figure 1.10.

Figure 1.10

10

In DobotBlock, we can process a sprite or backdrop picture. For example, after
we select a sprite, we can change the color and size and so on by clicking the
costume tabs. As shown in Figure 1.11, we can delete some costumes of the
sprite "John" in the costume tabs, and modify the name of the costume.

Figure 1.11

11

1. Task Release

(1) Task 1

In DobotBlock, we can upload a written program (Sing a song), and run it.

(2) Task 2

In DobotBlock, we can independently write a program, and try running it.

 Let's read it

Sounds

Besides Code and Costumes, the sprite can play sound. This function
makes the sprite lifelike. In Sounds, we can manage the sound played
by the sprite. For example, we can edit the name and effect and so on
of sound, see Figure 1.12.

Figure 1.12

Research Laboratory

Processing Workshop

12

Task 1

Step 1: Enable the programming software, click File in the menu, and
Load from your computer, see Figure 1.13.

Figure 1.13

Step 2: Select the file "Sing a song.sb3", and finally click Open to
upload the program.

 Upload a
Program

13

Boys and girls, since we have known DobotBlock software and tried writing
and running a program, could you tell me what is programming?

Knowledge Base

Task 1

Step 1: Click the Sprite List, and click Green Flag on the stage to run
the program, see Figure 1.14.

Figure 1.14

Step 2: Click Stop on the stage to stop the running program, see Figure
1.15.

Figure 1.15

Run a

Program

14

Content Result

I've known the DobotBlock software and its
interface

☆☆☆☆☆

I've preliminarily experienced what is programming ☆☆☆☆☆

I've written and run a program ☆☆☆☆☆

 Let's read it

What is programming?

Programming is also known as program design. It is a program process
to solve a specific problem and also a major step for software
development. Program design generally uses a program design
language as a tool, and gives a program of this language. Program
design includes analysis, design, coding, testing, and debugging.

A program, a series of computer instructions arranged in order, is
equivalent to the orderly task document of a computer. A computer
instruction means an instruction or command that has a computer to
execute a task.

Innovation Park

Modify the program "Sing a song": Ask the sprite to sing the song, then run
the program, and watch the change in the sprite on the stage.

Self-Assessment Room

15

- Smart Porter

John has recently opened a supermarket. He uses a smart robot as a helper.
In this supermarket, the robot handles articles by motion. But how does the
robot move and handle cargoes?

In this chapter, we will learn the Motion module through DobotBlock. The
module can control the motion mode, position, direction and so on of a sprite or
device. To control the motion of a sprite and a robot, we must have a command
of some mathematical knowledge and logic. Then, how do we control the
motion of a sprite and a robot. Boys and girls, let's explore this question!

Learning Target

Chapter 2 Motion
Control

 Students will learn how to control the motion
of a sprite and a robot.

 Students will experience how to pleasurably
control the motion of a sprite and a robot.

 Students will learn how to write a program to
control the motion of a sprite and a robot.

16

- Robot Drawing Square

John and Kelly found Mr. Lee, and expressed their idea and requirements. Mr.
Lee enabled DobotBlock in his computer, and asked John and Kelly to find
Motion in the block area, see Figure 2.1. John and Kelly found many blocks in
Motion of the sprite.

Figure 2.1

 2.1. Sprite Motion

Kelly, my robot cannot now perform
specific tasks. If I want it to move
around along a route and direction,
could you find a way to do this?

I think this is not a difficult
problem. Mr. Lee must
have a way. Let's go to ask
him for help.

17

John and Kelly find that these blocks can not only move the position of a robot,
but also enable it to rotate. This is so fun!

2.1.1. Sprite Motion

(1) Robot moving 10 steps

Boys and girls, we have finished running the program. Now, do you have any
question?

After running the program, John and Kelly find a big problem, and ask Mr. Lee,
"Mr. Lee, this robot turns right only. It cannot reach the designated position, nor
turn around. What shall we do?"

 Let's do it

1. Click the module to drag the block to the coding
area.

2. Click the module to drag the block to the coding
area.

3. Combine these blocks, and run the program, see Figure 2.2.

Figure 2.2

idea

 Let's think about it

 Which motions can these blocks in the Motion module help the sprite
(e.g., a robot) complete?

idea

 Let's think about it

 If we move a robot 10 steps, what blocks will we need? How do we
combine them?

18

(2) Robot moving forward or backward

Mr. Lee asks John and Kelly to continuously watch the blocks in the motion
module, and to think about the function of the "go to x: (-10) y: (0)" block, see
Figure 2.3. What does this block do?

Figure 2.3

John and Kelly find two values users can enter in the "go to x: (-10) y: (0)"
block. They understand the y value is 0. But they do not know why the x value
is -10. This is a negative number in math. Boys and girls, do you know
negative numbers? Let's guess what motions this block enables a robot to
complete in this program.

19

Boys and girls, do you see other negative numbers in life? Let's get to know
them.

(3) Positive numbers and negative numbers

 Let's do it

1. Click the module to drag the block to the

Coding Area.

2. Click to replace in the program moving a robot 10 steps

with and run the program, and watch how the robot

moves, see Figure 2.4.

Figure 2.4

20

As shown in Figure 2.5, the part on the left of zero along the number axis refers
to negative numbers, while the part on the right of zero refers to positive
numbers. A positive number is greater than zero, a negative number is smaller
than zero, and a positive number is greater than a negative number.

Figure 2.5

Positive numbers and negative ones are applied to not only math but also life.
Boys and girls, as it is very cold, particularly in the case of icing, we often hear
"centigrade degrees below zero" from weather forecast. For example, in Figure
2.6, it is "44 centigrade degrees below zero" in Antarctica, which is also written

as "-44℃".

Here, the negative number indicates a temperature lower than 0℃ or a

temperature below zero. In this case, there is a "-" (negative sign) before a

number. A temperature higher than 0℃ is called a temperature above zero. In

this case, there is a "+" (positive sign) before a number, but "+" is often omitted.

0℃ indicates a temperature at which fresh water starts to freeze. For example,

as Figure 2.6 shows, it is a temperature above zero in Beijing, while it is a
temperature below zero in Antarctica. Boys and girls, let's read and know these
temperatures.

Figure 2.6

Is a negative number presented in DobotBlock programming? What role does
it play? To find out these two questions, we need to learn another
mathematical concept, namely, rectangular coordinate system.

(4) Plane Cartesian coordinate system

There is a plane Cartesian coordinate system on the stage of DobotBlock.
Then, what is plane a Cartesian coordinate system? This is a plane Cartesian
coordinate system, see Figure 2.7.

21

Figure 2.7

A plane Cartesian coordinate system means a coordinate system consisting of
two mutually perpendicular axes with a common origin (the lateral axis is x-axis,
and the longitudinal axis is y-axis) in the same plane. The intersection point of
the two axes is called origin, whose coordinate is mathematically stipulated to
be (0, 0).

In a plane Cartesian coordinate system, we can set the coordinate of any point
in the plane. The coordinate of any point in the plane contains two value: one
indicates the lateral coordinate or x-coordinate; the other one indicates the
longitudinal coordinate or y-coordinate.

The coordinate of any point in the plane is written in a pair of brackets, where
the x-coordinate is placed before the y-coordinate, and both are separated by
a comma. As shown in Figure 2.8, the coordinate of point A is (3, 2), and that of
point B is (-4, -2).

idea

 Let's think about it

 What do you learn about from the plane Cartesian coordinate
system? How many axes does it contain? What do x and y indicate
respectively? What indicates the origin?

22

Figure 2.8

Boys and girls, can do you find the coordinate of any point in the coordinate
system? Let's interact and play two rounds of the "report the coordinate by
point" game!

Now, you have known the plane Cartesian coordinate system. But do you
know who invented it?

(5) Cartesian coordinate system on the stage

There is a plane Cartesian coordinate system on the stage in the DobotBlock
software. Then, how is the system presented?

Boys and girls, do you know what plane figure the stage of DobotBlock
software has?

Yes, it is a rectangular area, with the center being the origin of the coordinate
system. Can you read the stage scope? See Figure 2.10.

 Let's read it

The plane Cartesian coordinate system (or 2D coordinate system) in
math is a great invention by French mathematician Rene Descartes.

Figure 2.9 Rene Descartes

23

The stage of DobotBlock is a standard plane Cartesian coordinate system.
Find and click the "Xy-grid" backdrop from the backdrop library, and now, we
can see the plane Cartesian coordinate system on the stage. On the stage, the
horizontal range is from -240 to 240, and the vertical range from -180 to 180.
The stage center is the origin of this coordinate system, with a coordinate (0,
0).

The motion of the sprite is actually the motion of its coordinate point, during
which the point moves to another position from one position. The position of
the sprite depends on the x-coordinate and the y-coordinate of its center. As
shown in Figure 2.11, the central position of the robot has a coordinate (0, 0),
and the sprite robot stands at the center of the stage. If we move the central
position of the robot to the coordinate (100, 100), the sprite robot will move to
the top right corner of the stage, see Figure 2.12.

Figure 2.11 Figure 2.12

idea

 Let's describe it

What do you learn about from Figure 2.10? In this plane Cartesian
coordinate system, how do we indicate the coordinate of any point?

Figure 2.10

24

 Let's try it

To move a robot to the stage center through a program, we just need to
change the values of the x-coordinate and y-coordinate in the "go to x:
(-10) y; (0)" block to 0, and click the green flag button, see Figure 2.13.

Figure 2.13

Boys and girls, do you find that the "go to x: (-10) y; (0)" block is to
accurately move the sprite to a specific position on the stage? Yes, it is
a practical and convenient block.

idea

 Let's think about it

 What is the coordinate indicated by the "go to x: (-10) y: (0)" block? If
we need to return the sprite to the origin, how should we modify the
value in this block?

 Let's try it

How do we move a robot to the top right corner of the stage through a
program? Similarly, we just need to change the values of the
x-coordinate and y-coordinate in the "go to x: (-10) y; (0)" block to 100,
and click the green flag button, see Figure 2.14.

Figure 2.14

25

2.1.2. Sprite Rotation

John and Kelly can move a robot to the designated position by programming.
Yet the robot still faces the same direction only. They find some direction
rotation blocks in Motion. Then, what do these blocks do? How do we use
them?

In DobotBlock, each sprite is set a direction before it starts to move. By default,
the sprite turns right.

Then, how do we choose the rotation direction of a sprite? First, click Motion,
and find the "point in direction (90)" block, see Figure 2.15.

Figure 2.15

Drag the "point in direction (90)" block to the Coding Area, and click the value
area of this block. Then, a disk like a dial pops up, see Figure 2.16.

 Let's do it

Use the "go to x: (-10) y; (0)" block to modify the x-coordinate and
y-coordinate values:

Control a robot to move to the top right corner of the stage.

Control a robot to move to the position (145, -18) of the stage.

Control a robot to move to any set position of the stage.

26

Figure 2.16

The arrow is upward = point in direction (0)

The arrow turns right = point in direction (90)

The arrow is downward = point in direction (180)

The arrow turns left = point in direction (-90)

Of course, besides the above four cases, we can choose many other directions
of sprite rotation, see Figure 2.17. We can choose any direction from a
360-degree circle. See Figure 2.18 for the detailed angle corresponding to
each direction.

Figure 2.17

Figure 2.18

Boys and girls, have you learned sprite rotation? Let's perform a challenging
task.

27

1. Task Release

Program the Robot to Draw a Square: Program a robot to draw a square on
the stage, for example, draw a square with a 7 cm side.

2. Task Analysis

Boys and girls, if you want a robot to draw a square, what should you
consider?

You need to set the stage backdrop to white;

You need to create a sprite robot;

From the Control module, you need to find the module that controls the waiting
time every time the robot finishes drawing a stroke;

You need to set the position and direction of the robot;

You need to add Pen module in Add Extension to draw lines;

…

Carefully watch the following figure. We find this figure has four equal sides
and four right angles. It is called a square, see Figure 2.19.

Figure 2.19

Obviously, a robot takes four steps to draw a square, see Figure 2.20:

Research Laboratory

28

Figure 2.20

You usually draw a square with a ruler and a pen. How does a robot do so in
the programming software? From the task analysis we can find that this job
uses the Motion module and the Pen module.

2.1.3. Script Plan

Before starting this operation, we can write a script plan to guide the
programming.

Sprite
Task

Description
Block

A robot draws
four lines to
form a
square, with
each line
being 100
long.

Processing Workshop

29

Step 1: Select the default sprite "Sprite 1", see Figure 2.21.

Figure 2.21

Add a Sprite and
Module

30

After we add a sprite, we often need to adapt its size to the stage, or
change its name to facilitate use. In this case, we also need to modify
the name and size of the sprite, see Figure 2.22.

Figure 2.22

Step 2: Add a Pen module. Click the Add Extension button to add the
Pen module, see Figure 2.23.

Figure 2.23

Add a Sprite and
Module

31

Select the sprite robot in the sprite column. As per the script plan, drag
a block, and program the sprite robot in the coding area to draw a
square.

Step 1: Select the sprite robot, write a program shown in Figure 2.24,
and draw the first line towards the right.

Figure 2.24

Step 2: Select the sprite robot, write a program shown in Figure 2.25,
and draw the second line downward.

Figure 2.25

Write a Sprite
Script

32

Step 3: Select the sprite robot, write a program shown in Figure 2.26,
and draw the third line towards the left.

Figure 2.26

Step 4: Select the sprite robot, write a program shown in Figure 2.27,
and draw the fourth line upward.

Figure 2.27

Write a Sprite
Script

33

Step 5: Combine the above programs to allow the robot to draw a
square. The relations between the coordinates of the four angles of the
square and the coordinates set in the program are shown in Figure
2.28.

Figure 2.28

Note: The initial position of the robot may be any point on the stage. In
Figure 2.29, when we move the position of the robot, the coordinate
point on the "go to x: (-10) y: (0)" block will change accordingly.

Figure 2.29

Write a Sprite
Script

34

Content Result

I've learned how to operate the "go to x: (-10) y:
(0)" block

☆☆☆☆☆

I've known what is a Plane Cartesian
coordinate system

☆☆☆☆☆

I've known how to control the motion direction
of a sprite

☆☆☆☆☆

I've made a robot draw a square ☆☆☆☆☆

Innovation Park

In this course, we allow a robot to draw a square by calculating the
coordinates of the four angles of the square. Boys and girls, now let's
summarize how to calculate such coordinates.

If we want each side of a square to extend by 1.5 time to reach 150, what
shall we do? Modify the program according to Figure 2.30.

Figure 2.30

Self-Assessment Room

35

- Cargo Handling

2.2.1. Space Cartesian coordinate system

John asks everyone to think about how many axes a plane Cartesian
coordinate system have. How many values can set the coordinate of a point?

The coordinate system offers two axes, namely, x-axis (lateral axis) and y-axis
(longitudinal axis). Two values (x, y) can set the coordinate of a point.

 2.2. Robot Motion

Kelly, the robot in my smart supermarket
can move and rotate its direction. In
practical work, however, it moves in a
3D space rather than on the plane. What
shall I do?

Your robot seems to have to
further learn and understand a
3D space. This is a bit hard
problem, but I’m sure Mr. Lee
can find a solution!

36

This coordinate system has three axes, namely, x-axis (lateral axis), y-axis
(longitudinal axis), and z-axis (vertical axis), which are also called coordinate
axes. The coordinate axes and the origin constitute a space Cartesian
coordinate system 0-xyz. We can determine any point in space as 0, through
which to draw three mutually perpendicular axes (Ox, Oy and Oz). These axes
take 0 as the origin, and offer the same length unit.

In this coordinate system, three values can set the coordinate (x, y, z) of a
point, with 0 point being the coordinate origin. For example, how should we
denote the top position of Kelly through a space Cartesian coordinate system?
As shown in Figure 2.32, point B' in her top position has the x-coordinate value
as 1, the y-coordinate value as 1 and the z-coordinate value as 1. Thus, the
coordinate of point B' is (1, 1, 1).

Figure 2.32

2.2.2. Robotic Coordinate System

Similarly, to determine the end position of a robot, we must know its space
coordinate.

idea

 Let's think about it

 A space Cartesian coordinate system is a 3D space, as shown in
Figure 2.31. How many axes does it have? How many values can
set the coordinate of a point?

Figure 2.31

37

When we learn about the space coordinate of a point of a robot, we can
accurately control the position of such a point. For example, to move right such
a point 6 mm, forward 7 mm, and upward 5 mm, we just change the parameter
of its coordinate. The space Cartesian coordinate system of a robot is shown in
Figure 2.33.

Figure 2.33

Tip: No R axis exists without an end kit carrying a steering engine on the robot.
For example, the robot can rotate around R axis as it uses the suction cup and
the soft gripper.

38

1. Task Release

Create a "Porter" Game: Program a robot to simulate a porter to carry a block.

Boys and girls, think back how a porter loads cargoes. Generally, what should
a porter do before he carries cargoes to a truck from the storage zone? See
Figure 2.36 for this process.

idea

 Let's think about it

 How do we use a program to move a robot to point B from point A?

For example, to control the end of a robot to jump to point B (200,
50, -28) from point A (260, -50, -10), see Figure 2.34. Boys and
girls, do you understand this? You can try doing this.

Figure 2.34

Do you know how to move a robot to point B from point A along the
door-shaped route?

Let's think about this question this way: First raise the robotic arm to
a certain height from point A, then move it horizontally to the
position above point B, and finally lower it to the position of point B.

Figure 2.35

Research Laboratory

39

Figure 2.36

To improve efficiency and save manpower, how do we enable a robot to
automatically carry cargoes?

In this task we should use a robot to simulate a porter to carry cargoes twice. In
this course we will use a block to simulate a cargo, and carry two stacked
blocks to the loading zone from the storage zone. We will also stack those
blocks placed in the Loading Zone. For the arrangement of materials, see
Figure 2.37.

Figure 2.37

2. Task Analysis

To complete this task, you need to consider:

Arrange materials and devices, see Figure 2.37;

Add the robot device to Device;

Program a robot to carry blocks, and have a robot carry a block to the
designated position with a suction cup;

…

This handling task needs two steps, see Figure 2.38:

40

Figure 2.38

3. Script Plan

Device Task Description Block

A robot carries a
block to the loading
zone from the
storage zone.

Processing Workshop

Click Add Device, choose Magician Lite from the device library, and
delete the default device Magician, see Figure 2.39.

Figure 2.39

Add and Connect a

Device

41

Steps for connecting a device: Click Connect Device, and a page
appears. Then, select the corresponding port, and click Connect, see
Figure 2.40.

Figure 2.40

Add and Connect a

Device

Select a robot. As per the script plan, drag a block, and program the
Robot device in the coding area to carry a block.

Step 1: Select the Robot device, and write a program shown in Figure
2.41.

Figure 2.41

Write a Device

Script

42

Each block is fixed in height, and about 10 mm in concave height. As
shown in Figure 2.42, after we determine the suction position of the first
block, we can reduce the coordinate of z axis by 10 mm to determine
the suction position of the second block.

Figure 2.42

Step 2: Write a program for "carrying the second block". Select the
Robot device, and program the blocks shown in Figure 2.43.

Figure 2.43

Write a Device

Script

43

Step 3: Splice and combine the program “carrying the first block” and
“carrying the second block”, see Figure 2.44.

Figure 2.44

Write a Device
Script

44

Innovation Park

 Let's read it

Move the end tool of a robot. In this case, the coordinate value on the
control panel changes accordingly. We can quickly get the coordinate of
the end tool of the robot by right-clicking Fill coordinates, see Figure
2.45.

Figure 2.45

Blocks in the course are stacked. If we disperse them, what should a robot
do to carry them? Write a program to carry these blocks to the loading
zone from the storage zone. For the arrangement of blocks in the storage
zone and the loading zone, see Figure 2.46.

Figure 2.46

45

Content Result

I've known the space Cartesian coordinate
system

☆☆☆☆☆

I've completed the task of a "porter" ☆☆☆☆☆

Self-Assessment Room

46

 - Smart Service of John's Supermarket

John is an IT fan. As he proudly says his supermarket is magical, his friends
wonder why. Boys and girls, can you guess the answer? John has
programmed cargo warehousing to automatically calculate the quantity of
cargoes, and store opening to raise the supermarket popularity, and home
delivery… His supermarket attracts people from the town to experience. They
are curious about how John makes these functions happen.

Learning Target

Chapter 3: Data and Operation

 Students will learn how to store and access data
in the computer.

 Students will learn how to perform data
operations in the computer.

 Students will raise their ability to process and
apply data, and experience the importance of
data.

47

- Home Delivery Service

3.1.1 Variables

Today, we are going to learn variables. A varying value is called a variable.
Delivery addresses change with directions and distances of customers' homes.
We can indicate a distance with a variable. Thus, it will be OK if the robot
knows a distance variable.

Chart of thinking program steps:

 Let's do it

 Introduce the backdrop into the stage

 3.1. Program Data (1)

Cargo delivery
robot? Is it so
magical? Let me look
at it.

You got it!

Yes, we have a robot to
offer the home delivery
service freely.

John, I've heard that
your supermarket can
offer the home delivery
service.

idea

 Let's think about it

 John asks everyone to consider a question. His customers in the
town live in different places. For example, Daisy's home is 140
meters from the east of the supermarket, Gary's 100 meters from the
north of the supermarket, and Ella's 170 meters from the west of the
supermarket. The robot remembers only one address at one time.
Then, how can we make the robot remember so many addresses
and deliver packages to the right home?

48

3.1.2 Create a Variable

In DobotBlock, click Make a Variable in the Variables module. Enter a new
variable name, click OK, and now we have created a variable, see Figure 3.1.

Figure 3.1

3.1.3. Assign a Value to the Variable

(1) Set the initial value of the variable

After creating a variable, we need to initialize it, assigning an initial value. We
use the "set (Distance) to (0)" block to initialize the variable value, and set the
initial value of the variable "Distance" to 100, see Figure 3.2.

Figure 3.2

 Let's do it

 Create a "distance" variable.

idea

 Let's think about it

 What is a constant? Could you give any examples of variables
and constants in life?

 Let's do it

 Set the initial value of the "Distance" variable to 0.

 Try programming the cargo delivery by a robot.

49

(2) Modify the value of the variable

After a robot delivers a cargo, the device must return to the supermarket. In
DobotBlock, we can modify the value of the variable in the "increase (Distance)
by (1)" block and the "set (Distance) to (0)" block. Now, we can rely on the
"increase (Distance) by (1)" block to increase or decrease the current value of
the "Distance" variable.

Tip: If the increased distance during cargo delivery is positive, the increased
distance during return will be negative.

Today we've learned variables. A variable can assign a short,
easy-to-remember name to each segment of data ready for use in the program
to facilitate our use, so it is very helpful. The "Distance" variable used by a
robot is the name of several distance data, such as 140 meters, 170 meters or
100 meters. In DobotBlock, data may fall into integer type, floating-point
number type, string type and Boolean type.

For example, Cindy comes to the supermarket to buy 2 kilograms of bananas
for 8.2 dollars, and she has made the payment. In this sentence, "bananas"
belongs to the string type, "2" in 2 kilograms to the integer type, "8.2" in 8.2
dollars to the floating-point number type, and whether to complete the payment
to the Boolean type. See Table 3.1 for four data types.

Table 3.1 Four Data Types

Data Type Example

Integer type 0, -3, and 10

Floating-point number type 3.14, 6.18, and -2.1

String type A, apple, I'm a student

Boolean type True, and false

 Let's do it

 Write a program to allow the robot to return to the supermarket.

Knowledge Base

50

1. Task Release

John receives three orders today. Now, he must set his robot to deliver
cargoes. The delivery destinations are Gary's home, Daisy's, and Ella's
respectively. Every time the robot finishes delivering a cargo, it must return to
the supermarket to pick up another cargo and deliver it to the next destination.
Boys and girls, now let's design this program together.

2. Task Analysis

(1) Sprite interface

A robot picks up a cargo from John's supermarket and starts out. It determines
the first destination as Gary's home, sets the "Distance" variable as a distance
from Gary's home, moves the "Distance" toward Gary's home and reaches that
destination. Then, it jumps back to the supermarket to pick up another cargo,
and deliver it to the next destination.

John's home delivery service falls into three parts, see Figure 3.3.

Figure 3.3

Research Laboratory

 Let's read it

Boolean type originates from Boolean algebra. This type of data
contains only two values: true and false. Boolean type of data usually
acts as the result of a conditional judgment. For example, this
expression, 5 > 3, is valid, so Boolean value returned by this expression
is true. This expression, 5 < 3, is not valid, so Boolean value returned by
this expression is false.

Home Delivery
Service

1. Deliver to Gary’s
home

2. Deliver to Daisy’s
home

3. Deliver to Daisy’s
home

Back to
supermarket

Back to
supermarket

Back to
supermarket

51

(2) Device interface

The initial position of the end of the robot is set in John's supermarket. The
robot grips the cargo with its end gripper, and uses the "move along a
door-shaped route to X()Y()Z()R()" block to carry the cargo to Gary's home,
and release it. Then, the robot uses such block to jump back to the
supermarket, and grip and carry another cargo to the next destination. See
Figure 3.4 for the device arrangement position.

Figure 3.4

Home delivery service by the robot falls into three parts, see Figure 3.5.

Gary’s
Home

Ella’s Home Daisy’s
Home

John’s
supermarket

Robot

52

Figure 3.5

3. Sprite Script Plan

Sprite Task Description Block

1. Deliver the
cargo to Gary's
home

2. Deliver the
cargo to Daisy's
home

3. Deliver the
cargo to Ella's
home

Delivery

1. Grip the cargo
and jump to
Gary’s home

1. Grip the cargo
and jump to
Gary’s home

1. Grip the cargo
and jump to
Gary’s home

Release the cargo
and jump back to
the supermarket

Release the cargo
and jump back to
the supermarket

Release the cargo
and jump back to
the supermarket

53

4. Device Script Plan

Device
Task

Description
Block

1. Deliver
the cargo to
Gary's
home

2. Deliver
the cargo to
Daisy's
home

3. Deliver
the cargo to
Ella's home

54

Processing Workshop

Step 1: Add the backdrop. Click Upload Backdrop in the Stage List, and
find the file "John's supermarket.png", and upload the file to the stage,
see Figure 3.6.

Figure 3.6

Upload a Stage
Backdrop

Click Make a Variable in the Variables module, and fill in the variable
name "Distance", see Figure 3.7.

Figure 3.7

Create a Variable
and List

55

Deliver the cargo to Gary's home. For the program of the
corresponding sprite, see Figure 3.8.

Figure 3.8

There is a similarity between the program to deliver the cargo to
Gary's home and the one to deliver the cargo to Daisy's and Gary's
homes. Write the program for delivery to Daisy's and Gary's homes.

Deliver the cargo to Gary's home and jump back to the supermarket.
For the program of the corresponding sprite in this case, see Figure
3.9.

Figure 3.9

There is a similarity between the program to handle the cargo to
Gary's home and the one to handle the cargo to Daisy's and Ella's
homes. Boys and girls, please write the program for the later delivery
yourselves.

Write a Sprite
Script

Think about why "0-Distance"
enables the robot to jump back
to the supermarket?

56

Content Result

I've understood data types ☆☆☆☆☆

I've known the definition of the variable ☆☆☆☆☆

I've learned how to create a variable ☆☆☆☆☆

I've learned how to initialize a variable and to
modify its value

☆☆☆☆☆

I've completed the task of "home delivery
service"

☆☆☆☆☆

Innovation Park

To modify the value of a variable, we can not only "set (Distance) to 0", but
also use "increase (Distance) by (1)". In the task of home delivery, can we
implement the function of "increase (Distance) by (1)" or both "set
(Distance) to 0" and "increase (Distance) by (1)"? Please consider this
question. And perform and complete this task yourselves.

Self-Assessment Room

57

- Store Opening

John wants you to think about two questions. How does the draw system
randomly offer awards? How does the draw system store so many prizes?

1. List

A variable can store a single value. But if you desire to store a series of values,
the variable may fall short of your expectation. For example, there are 20
prizes. Supposing you intend to store the names of 20 prizes, the program will
have to use 20 variables. This is a complicated job. But we can rely on a list to
solve this problem.

(1) Define a List

A list is a container storing multiple variables. You can store and get the value
of each variable in the container.

To create a list, we first name it, and then access each variable in the list based
on the variable position.

Next, let's create and use a list.

(2) Create a list and add data

Click Make a List in the Variables module, see Figure 3.10. Fill in the list name.
Here, we name the list "Prize List", see Figure 3.11.

 3.2. Program Data (2)

My supermarket is launching a
lucky draw for store opening
ceremony. Only if you press the
draw button, the chosen prize
appears in the screen. Come try
your luck. Maybe, you will win a
grand prize!

Why is this place so
bustling with a sea of
people?

58

Figure 3.10

Figure 3.11

After we create a list, the list is initially empty. So its length is 0. We can click
the "+" sign in Figure 3.12 to add a new variable, and change the size of this
interface by dragging the equality sign with a mouse.

Figure 3.12

If the Prize List in the list contains four different prizes, we can create four
variables by clicking the "+" sign in the lower left corner four times. Each
variable is an element of the list. In the editing brackets, enter the names of the
prizes, namely, candy, toy, school bag, and pencil, see Figure 3.13.

59

Figure 3.13

1. Task Release

Create a Lucky Draw System: John's supermarket launches a special offer for
opening. Please press the luck button, and you may draw a lucky prize.

2. Task Analysis

The draw system provides the Start sprite and the Stop sprite. Start functions
to start the draw. After you click Start, the prize name will quickly roll on the
stage. Stop functions to stop the draw. After you click Stop, the name of the
chosen prize will appear on the stage. The chosen prize will not appear in the
next draw.

The draw system falls functionally into three tasks, see Figure 3.14.

Figure 3.14

Research Laboratory

 Let's do it

 Create Prize List to store the names of the prizes.

1. Start the draw

1. Stop the draw

3. Make sure the chosen prize will not appear in the next draw

Lucky Draw

60

3. Script Plan

Sprite Task Description Block

1. Initialize the value
of a variable

2. Start the draw

3. Delete the chosen
prize

Stop draw

61

Processing Workshop

Step 1: Add a sprite. Click Upload Sprite in the Sprite List, find the files
“Start” and “Stop”, upload the files to the Sprite List, and delete the
default sprite "Sprite 1", see Figure 3.15.

Figure 3.15

Add a Sprite and

Backdrop

Step 2: Add a backdrop. Click Upload Backdrop in the Sprite List, find
the file "Lucky Draw Dropback.png", and upload the backdrop "Lucky
Draw Dropback.png" to the stage, see Figure 3.16.

Figure 3.16

Add a Sprite and
Backdrop

62

Click Make a Variable in the Variables module, and fill in the variable
name "Prize", see Figure 3.17.

Figure 3.17

Create a Variable
and List

Step 2: Create Prize List. Click Make a List in the Variables module, fill
in the variable name "Prize", and edit the elements of the list "Prize
List", see Figure 3.18.

Figure 3.18

Create a Variable
and List

63

Step 1: Edit the Start program of the sprite.

The program of the Start sprite falls into two parts: initialize the value of
a variable and implement the start draw function. The two parts should
be programmed separately.

When the green flag is clicked, we can set the variable prize to 0, see
Figure 3.19.

Figure 3.19

When the sprite Start is clicked, we can start the draw. Delete the
chosen prize, and allow the prizes to appear randomly, see Figure 3.20.

Write a Sprite
Script

Figure 3.20. Starting the draw

Step 2: Write the program of the sprite Stop. When this sprite Stop is
clicked, we can stop the draw, and all scripts, see Figure 3.21.

Figure 3.21

Write a Sprite
Script

64

 Let's read it

To allow the draw system to show the prizes randomly, we use the "pick
random (0) to (10)" block. This block randomly generates a number
every time. Of the numbers generated, the minimum value is 0, and the
maximum value is 10. These two numbers form the range of randomly
picked values. Table 3.2 gives the use case of the random number
block.

Table 3.2

Sample Output Result

{0, 1}

{0, 0.1, 0.15, 0.2, 0.268, 0.3521…1.0}

Note: "pick random (0) to (1)" differs from "pick random (0) to (1.0)". Although the
maximum value 1 is equal to 1.0, 1 is the integer type of data, 1.0 the
floating-point type of data. Thus, the random numbers you obtain from both are
accordingly the integer type of data and the floating-point type of data.

65

Content Result

I've understood the definition of the list ☆☆☆☆☆

I've learned how to create a list ☆☆☆☆☆

I've known about the list-related blocks ☆☆☆☆☆

I've completed the task of a draw system ☆☆☆☆☆

Innovation Park

The draw system in the preceding case offers seven types of prizes.
Generally, however, we will arrange multiple draw links in the evening
party, with different quantities and names of prizes. Four types of prizes
may be available to the draw link at the opening of the evening party. Two
types of prizes may be available to the draw link in the middle of the
evening party. One type of prize may be available to the draw link at the
end of the evening party. Then, how does the program learn about the
quantities and names of prizes at each link?

We can add a link to ask the user for the prize name. We take a special
value (e.g., 0) as the end of the list, and include the prize name answered
each time in the list, see Figure 3.22.

Figure 3.22

Self-assessment Room

66

- Holiday Activity (1)

John wants you to think about a question. If we want to use a computer to help
us with math problems, what shall we do?

3.3.1. Arithmetic Operators

The computer program supports four basic arithmetic operations: addition (+),
subtraction (-), multiplication (*) and division (/), see Figure 3.23.

Figure 3.23

We can use "say (Hello!)" block to show the results of the four operations, see
Figure 3.24.

 3.3. Data Operation (1)

We are having a holiday activity. The theme for
the first week is math. Kelly, come answer
questions, and let's see who will finish them
faster.

It’s summer vacation.
Why are there so
many lovely kids in
the supermarket?

67

Figure 3.24

Arithmetic operators in DobotBlock also include remainder operations. For the
block, see Figure 3.25.

Figure 3.25

 Let's do it

 Try using arithmetic operators according to Figure 3.24.

 The host starts to raise the first round of questions, asking
students to write programs. Let's look at who answers the
questions most quickly.

78*5= 999/28= 13567+65327= 7782589-2132413=

idea

 Let's think about it

 The host starts to raise the second round of questions, asking
students to calculate a remainder. How do we program the
remainder calculation?

68

Through a remainder operation we can get a remainder after the division
between two numbers. The remainder of an exact division expression is 0. For
example, the reminder of 11 divided by 2 is 1, and the remainder of 10 divided
by 2 is 0, see Figure 3.26.

Figure 3.26

3.3.2. Comparison Operators

In math, we often use the inequality operation signs like greater than sign (>),
less than sign (<) and equality sign (=) to compare numbers. In DobotBlock,
we often use comparison operators like greater than sign (>), less than sign (<)
and equality sign (=) to compare the relations between numbers, between

idea

 Let's think about it

 The third round of questions raised by the host is to decide
whether the result of an inequality is true. If yes, the result is true;
otherwise, it is false. Then, how do we program this condition?

 Let's do it

 Program the remainder calculation according to Figure 3.26.

 The host formally starts to raise the second round of questions,
asking students to calculate the remainders of the following
formulas. Let's look at who answers these questions most quickly.
Calculate the remainder of 568 divided by 15, that of 236 divided by
6, that of 333 divided by 12, and that of 789327 divided by 23

69

variables, between expressions or between characters. Comparison operators
are in the Operators module, see Figure 3.27.

Figure 3.27

We can use the "say (Hello!)" block to show the comparison result of 3 and 9
by a comparison operator, see Figure 3.28.

Figure 3.28

 Let's do it

 Program the comparison operation according to Figure 3.28.

 Let's read it

The block of comparison operators is hexagonal. The hexagonal block in
DebotBlock is also called Boolean expression. The result returned by
Boolean expression only contains two items: true and false. The returned
result is called Boolean result.

70

3.3.3. Logical Operators

In programming, we often use logical operators, "and", "or" and "not" to
connect two or multiple Boolean expressions.

For the three logical operators and their meanings, see Figure 3.3.

Table 3.3

Operator Meaning

Only when two Boolean expressions are both true are
their results true.

If only one Boolean expression is true, the result will be
true.

When the Boolean expression is false, the result will be
true.

As we know, the expressions "3 < 5" and "5 > 3" are true, whereas "5 < 3" and
"3 > 5" are false. The two ones are connected with logical operators. For the
program and its running result, see Figure 3.29.

idea

 Let's think about it

 Only when your answers to two inequalities are both true can you
qualify for the next round of contest. How do you program this
condition?

71

Figure 3.29

In math, we often compare numbers with greater than or equality sign (≥), less
than or equality sign (≤). In DobotBlock, however, there are not these two signs.
In this case, how do we implement the functions of such two signs?

For this, we can use logical operators. For example, to express the range of x
≥ 7, we can use "or" or "not", see Figure 3.30.

 Let's do it

 Only when your answers to two inequalities are both true can you qualify for
the next round of contest. Based on the program in Figure 3.29, decide
which logical operator you should choose to achieve the above purpose.

72

Figure 3.30

 Let's read it

To perform more mathematic operations, DobotBlock offers rounding
off, random numbers, absolute values and among other mathematical
functions. For example, from the "absolute value ()" block in the
Operators module, we can draw down a menu, and find mathematical
functions like "sqrt", "trigonometric functions", "log" and "exponent",
see Figure 3.31.

Figure 3.31

 Let's do it

 Try using logical operators to denote x ≤ 7 and 5 ≤ x ≤ 7.

73

1. Task Release

Make a Simple Calculator: We can design a simple calculator with DobotBlock
to perform the basic operations of addition, subtraction, multiplication and
division.

2. Task Analysis

The simple calculator can perform three tasks, see Figure 3.32.

Figure 3.32

3. Script Plan

Sprite Task Description Block

1. Ask and wait
for entering the
number and
mathematical
operators

Research Laboratory

74

Sprite Task Description Block

2. Operate

3. Say the
operation result

Processing Workshop

In the Sprite List, add the sprite "Kelly (1)", and delete the default sprite
"Sprite 1", see Figure 3.33.

Figure 3.33

Add a
Sprite

75

In the Variables module, click Make a Variable and we can create four
variables, and name them The first number, The second number,
Arithmetic operator and Operation result, see Figure 3.34.

Figure 3.34

Create a
Variable

76

Step 1: Ask and wait for entering the number and mathematical
operators.

Find the "ask (What is your name?) and wait" block in the Sensing
module, and enter the inquiry content "What is the first number?" in
such module, see Figure 3.35.

Figure 3.35

Set the value of the variable "The first number" to answer, see Figure
3.36.

Figure 3.36

Similarly, ask the arithmetic operator and the second number, see
Figure 3.37.

Figure 3.37

Step 2: Operate.

Decide operators, and then perform related operations. For example,
decide whether the variable "Arithmetic operator" is "+". If yes,
perform the addition operation on the first number and the second
number, see Figure 3.38.

Figure 3.38

Write a Sprite
Script

77

Similarly, if we decide "Arithmetic operator" as "-", "*" or "/", we can
perform corresponding operations on the first number and the second
number, see Figure 3.39.

Figure 3.39

Step 3: Say the operation result. Find the "say (Hello!)" block in the
Looks module, and allow the sprite to say the operation result, see
Figure 3.40.

Figure 3.40

Step 4: Integrate the programs. Repeat the operation and say its result.
For the program of the simple calculator, see Figure 3.41.

Write a Sprite
Script

78

Figure 3.41

Write a Sprite
Script

79

Content Result

I've understood arithmetic operators,
comparison operators and logical operators.

☆☆☆☆☆

I've completed the tasks of a simple calculator ☆☆☆☆☆

We can click the green flag button to run the program, enter the formula
for calculation, and check the calculator for accuracy. For example,
when we enter the formula 5*6, the operation result is shown in Figure
3.42.

Figure 3.42

Running Result
of the Program

Self-Assessment Room

80

- Holiday Activity (2)

John wants you to think about a question. In the programming, how do we
shuffle the letters of an English word to get a new word with shuffled letters?
(Characters in the activity are glyph-like units or signs, including letters,
numbers, operators and punctuations.)

String Processing

A string is a limited sequence consisting of zero or multiple characters. We
look on an English word as a sequence of multiple letters. To shuffle the letters
of an English word, we can operate a string. In DobotBlock, characters in a
string are stored in order. We can process characters by using the

, , and other string
processing blocks. For example, we join the string "Apple", take its characters
and calculate their numbers, see Figure 3.43.

 3.4. Data Operation (2)

It sounds fun.
Can’t wait to play
it!

This Friday and the theme will be
based on interesting English
games. Shuffle the letters of an
English word, and guess what
the correct word is.

The holiday activity at the
supermarket is warmly
welcomed by adults and
children in this town. John,
when will the second activity
start?

81

Figure 3.43

1. Task Release

Create an Interesting English game: Randomly choose a word from the
wordlist, shuffle the letters of the word, and guess the correct word according
to the output unrecognizable "word". For the game rule, see Figure 3.44.

Figure 3.44

2. Task Analysis

According to the game rule, we divide the game into creating a wordlist,
choosing a word randomly, shuffling the letters, and guessing the word.

 Let's do it

 Process the string "Apple" with a string processing block, and ask
Kelly to say the third character and end character of the string.

Research Laboratory

82

We shuffle the letters through the following steps:

(1) Randomly choose any letter in a word, and put the letter in the first place of
the unrecognizable word.

(2) Delete the used letter.

(3) Integrate the randomly selected letters to form an unrecognizable "word".

3. Script Plan

Sprite Task Description Block

1. Create a
wordlist.

2. Choose a word
randomly.

3. Shuffle the
letters: Choose
any letter from a
word, put the
letter in a null
character string in
order according
to the random
position, and
delete the used
letter.

83

Sprite Task Description Block

4. Guess the
word: Show the
shuffled word,
ask the answer,
and fill in it. If the
answer is true the
game ends, or
you can continue
to guess the
word.

In the Sprite List, add the sprite "Kelly (1)", and delete the default sprite
"Sprite 1".

Add a Sprite

Processing Workshop

84

Create a list, name it "wordlist", and add words in the list, see Figure
3.45.

Figure 3.45

Create a
List

85

Step 1: Choose a word randomly. Create a variable "random", and
store a random word in the wordlist, see Figure 3.46.

Figure 3.46

Step 2: Shuffle the letters. Choose any letter from a word, put the letter
in a null character string in order according to the random position, and
delete the placed letter, see Figure 3.47.

Figure 3.47

Step 3: Guess the word. Show the shuffled word, ask the answer, and
fill in it. If the answer is true the game ends, or you can continue to
guess the word, see Figure 3.48.

Figure 3.48

Write a Sprite
Script

86

Content Result

I've known the character and the string ☆☆☆☆☆

I've learned some blocks relating to string
processing

☆☆☆☆☆

I've completed the task of an "interesting
English game".

☆☆☆☆☆

Step 4: Integrate the program of the interesting English game, see Figure
3.49.

Figure 3.49

Write a Sprite
Script

Self-Assessment Room

87

-- Expansion of Smart Supermarket

John' supermarket is increasingly popular, especially after he offers the home
delivery service. To offer a better shopping experience for his customers, John
decides to expand his supermarket into a shopping center. Then he needs to
make a lot of decisions during the expansion; for example, what’s to be built
first and what’s next? When will the decoration start, and when will his

shopping center open again‧‧‧. All of them can be expressed by program

structure. Lets' find the relation between program structure and decisions
together in this chapter!

Learning objectives

 Learn the basic knowledge of sequence, loop and branch
structure.

 Program with sequence, loop and branch structure to
better use our computer.

Problem-solving skills

Chapter 4 Program

Structure

88

-- Planning of smart supermarket expansion scheme

Mr. Lee draws a flow chart to help John understand the overall expansion
process, see Figure 4.1.

Mr. Lee, what are the steps to
expand a supermarket into a
shopping center?

Everything needs to follow a sequence.
Here there are basically the following
steps to follow.

Section 1 Sequential Structure

and Loop Structure

89

Figure 4.1

1. Flow chart

Flow chart is to show the process of a thing in life with specific graphic symbols.
Generally, we denote the start or end of a thing with an ellipse, and the specific
step with a rectangle, such as foundation treatment, building construction,
indoor water and electricity decoration as well as lighting and air conditioning
equipment installation in the expansion. Also, we represent the flowline by a
straight line with an arrow, to show the direction of the work process. See Table
4.1 for the basic symbols and functions of flow chart.

Table 4.1

Basic Symbols of Flow Chart

Name Symbols Function Examples

Start and
end

Start or end the
program

90

Basic Symbols of Flow Chart

Name Symbols Function Examples

Flowline Direction of the process

Processing

Take a step

Judgment

Judge according to a
certain condition

Remarks: the above are common symbols in flow chart, and we will also learn some
others in the later study.

We can also use flow chart during program design to represent the sequence
for executing instructions.

2. Sequential structure

Mr. Lee directs John to start from Step 1 and end at the last Step in turn, just
like that in Figure 4.2; such a program structure is namely the sequential
structure. So in program design, sequential structure is namely the sequence
executing instructions from the first one to the last, see Figure 4.2.

Figure 4.2 Flow Chart of Sequential Structure

Then Mr. Lee and John come to the construction process. Mr. Lee divides the
whole process generally into four steps, and each of the steps can be divided

91

into a lot of miniterms. For example, the building construction can further be
divided into wall masonry, installation of doors, windows and lintels, concreting
for stairs and floorslabs and roofing..., see Figure 4.3.

Figure 4.3

To make it easier to understand, Mr. Lee writes a program with DobotBlock for
John to move bricks by the robotic arm.

92

3. Loop structure

It is inefficient and takes much time when moving only one brick at a time. Is
there any way to carry continuously? Mr. Lee suggests John use the loop
structure in program structure, and thus he can repeat a function in the
program.

In DobotBlock, blocks that can realize loop are "repeat", "repeat (10)" and
"repeat until ()", see Figure 4.5.

Figure 4.5

(1) "repeat"

It is an instruction to repeat countlessly, namely infinite loop. When using
"repeat", the specific block to be repeated is in the groove of the repeat
instruction, see Figure 4.6.

 Let's do it

 Run the program "Graphical Programming and Robots" \ Chapter 4 \
Section 1 \ Motion of Robots (1).sb3", finish carrying bricks by using
blocks. Make robot move to the block position in Area A, open the
suction cup to suck the block, and then make the robot move to
Area B to place the block.

 See Figure 4.4 for the schematic diagram of the robot and block
placement.

Figure 4.4

93

Figure 4.6

Clicking "repeat" during programming, we will keep repeating the block inside
until clicking Stop on the Stage, see Figure 4.7 for the flow chart of repeat.

Figure 4.7

 Let's do it

 Run the program "Graphical Programming and Robots" \ Chapter 4\
Section 1 \ Motion of Robots (2).sb3", make robot repeat the motion
below: move from the initial position to the first point and then to the
second point, and finally return to the initial position.

94

(2) "repeat (10)"

It is an instruction to repeat for (10) times. The number 10 in the ellipse frame
is namely the repeating times 10, and the specific block to be repeated is in the
groove of repeat (10), see Figure 4.8.

Figure 4.8

(3) "repeat until ()"

When using "repeat until ()", we will repeat the block inside until the repeat
condition is met, see Figure 4.9.

 Let's do it

 Run the program "Graphical Programming and Robots" \ Chapter 4 \
Section 1 \ Motion of Robots (3).sb3", make robot repeat the motion
below for 5 times: move from the initial position to the first point and
then to the second point, and finally return to the initial position.

 Use "repeat (10)", but change the repeating times into 5.

95

Figure 4.9

When using "repeat until ()", the repeat condition is at the hexagon position of
repeat until… (). Both Boolean data and expressions can be the condition. It is
to be decided according to the actual condition.

For example, when we need to carry 5 bricks, set the initial value of the
number of bricks moved to 0; the number will increase by 1 each time after we
carry 1 brick, until the number is 5, then exit the repeat. See Figure 4.10 for the
moving process and flow chart.

96

Figure 4.10

1. Task release

Carry a list of blocks: carry a list of blocks (4 blocks) in Area A to Area B and
place blocks in Area B into a list. See Figure 4.11 for the schematic diagram of
the robot and block placement.

Figure 4.11

Research Office

 Let's do it

 Run the program "Graphical Programming and Robots" \ Chapter 4 \
Section 1 \ Moving 5 bricks.sb3", make robot repeat to carry 5 bricks.

97

2. Task analysis

We carry them from back to front in the task, see Figure 4.12. Similarly, we
place the blocks in Area B from back to front.

Figure 4.12

When carrying blocks by robot, the number of blocks in Area A and Area B will
change, see Table 4.2.

Table 4.2

Carrying Changes

Before carrying

After carrying the first block

98

After carrying the second
block

After carrying the third block

After carrying the fourth block

See Figure 4.13 for the change to the coordination of blocks when carrying
them from back to front.

Figure 4.13

All blocks are placed neatly in a list, so the coordination of Y is unchanged, but
the coordination of X increases. It is because that both the length and width of
the grid for placing blocks are 20 mm in the block box, so the coordination of X

99

will increase by 20 each time after carrying a block.

Read the flow chart of "carrying a list of blocks" according to the task analysis,
see Figure 4.14.

Figure 4.14

3. Script planning

Device
Task

description
Block

1. Initial
settings

100

Device
Task

description
Block

2. Value of
initial variable
"i"

3. The robot
carries a list
of blocks in
Area A to
Area B

Click "Variable" module and "Set up a variable", fill new variable "i" in the
pop-up interface. We can use variable "i" to record the times for carrying
blocks, see Figure 4.15.

Figure 4.15

Create variable

Step 1. Add the device "Magician Lite" in device list at the lower left of
DobotBlock interface and delete the default device "Magician".

Step 2. Connect robot and computer with a Type-C cable, and click
Connect key in the control area of DobotBlock to connect device.

Add and connect device

Processing zone

101

Step 1. Initial setting. Suck the block with a suction cup when carrying it with
robot, see Figure 4.16.

Figure 4.16

Step 2. The initial value of variable "i" is 1, see Figure 4.17.

Figure 4.17

Step 3. Set up judgment conditions. When we use robot to carry a list of
blocks (4 blocks), when i=1, the robot will carry the first block; when i=2, it will
carry the second block, when i=3, it will carry the third block, and when i=4, it
will carry the fourth block. So, when i=5, it will stop repeat. When using "repeat
until ()", we need to set the program of setting judgment conditions, see Figure
4.18.

Figure 4.18

Write device
script

102

Step 4. The robot will carry blocks one by one from back to front. It will
move to Area A to suck the block, and then move to Area B to place it. The
value of variable "i" will increase by 1 each time after carrying a block, see
Figure 4.19 for the programming.

Figure 4.19

Lets' think about it: what does 20 mean in the expression 260+20*i for coordination
of X?

Step 5. Integrate program. The robot carries a list of blocks from Area A to
Area B, see Figure 4.20 for the programming.

Figure 4.20

Write device
script

103

Content Result

I've learned what's the sequential structure and
process.

☆☆☆☆☆

I've learned what's the loop structure and
process.

☆☆☆☆☆

I’ve finished "carrying a list of block". ☆☆☆☆☆

Self-Assessment Room

Carrying two lists of blocks: carry two lists of blocks (4/list) in Area A
to Area B and also place the blocks in Area B into two lists. See
Figure 4.21 for the schematic diagram of robot and block placement.

Figure 4.21

Innovation park

104

-- Solution for tile classification

1. Single branch structure

There is only one judgment condition in single branch structure, and only when
the condition is met, the program will execute corresponding instructions. See
Figure 4.22 for the flow chart of single branch structure.

We need to judge first and then choose
corresponding steps based on our
judgment. Here we can solve it by using
the branch structure in program design.

Mr. Lee, the expansion goes very well. I
bought floor tiles of 80 cm X 80 cm and
wall tiles of 30 cm X 60 cm for indoor
decoration. Look, here are them, but
how to distinguish them easily?

Section 2 Branch

Structure (1)

105

Figure 4.22

Taking the problem encountered by John as the example, if John knows
whether the side length of the tile is 80 cm, then he can judge if it is a floor tile,
see Figure 4.23.

Figure 4.23

In DobotBlock, "if..., then..." is another block corresponding to the single
branch structure, see Figure 4.24.

Figure 4.24

In "if..., then..." block, the judgment condition is at the hexagon position; it can
include an or several instruction (s). If the condition is met, then run all blocks
inside. While if not, then run blocks behind "if..., then...".

106

For example, when judging if it is a floor tile, if the side length is 80 cm, then
the program can judge that it is the floor tile; see Figure 4.25 for some
programs for judgment of floor tiles.

Figure 4.25

2. Dual branch structure

There is only a judgment condition in the dual branch structure to come into
two different branches. We can choose any of the branches based on
judgment and execute corresponding instructions. As shown in Figure 4.26, if
the condition is met, then execute instruction A; while if not, then execute
instruction B.

Is there any way to distinguish the
floor tile from wall tile by a
judgment?

Sure, have a try
about the dual
branch structure.

 Let's do it

 Run "Graphical Programming and Robots" \ Chapter 4 \ Section 2\
Judgment of Floor Tiles.sb3", enter the side length of a floor tile to check
if it is floor tile.

107

Figure 4.26

In DobotBlock, "if..., then...else..." is another block corresponding to the dual
branch structure, see Figure 4.27 for its programming format.

Figure 4.27

In "if..., then...else..." block, the judgment condition is at the hexagon position.
If the condition is met, then run all blocks inside the first groove. While if not,
run blocks in the groove below the "else".

Mr. Lee suggests John to solve his new question in the way in Figure 4.28.

108

Figure 4.28

1. Task release

Ticket checking by ticket inspectors (I): the ticket inspector will ask for height
before the student takes the bus. If the height is < or = 1.2 m, then the student
can take the bus for free. If > 1.2 m, the ticket inspector will ask the student to
buy a ticket.

2. Task analysis

Fill out the flow chart "Ticket Checking by Ticket Inspectors (I)" in Figure 4.29
according to task analysis above.

Research Office

109

Figure 4.29

3. Script planning

Sprite Task description Block

1. Ticket inspector
asks for height.

2. Enter the height
and set the entered
value as the answer.

3. Judge if the student
needs to buy a ticket
according to the
answer.

110

Step 1. Add sprite "City Bus". Click Sprite, the key Add Sprite on the
interface, and then click sprite "City Bus" on the pop-up interface, delete
the default sprite "Sprite 1".

Step 2. Add sprite "Abby" and set its size as 60. Also, adjust the position
of "Abby" on Stage, see Figure 4.30.

Figure 4.30

Add
sprites

Processing zone

111

Innovation park

Step 1. Ticket inspector asks for height. Program to ask for student's
height in the Coding Area of sprite "Abby", see Figure 4.31.

Figure 4.31

Step 2. Judge if the student needs to buy a ticket based on the answer,
see Figure 4.32.

Figure 4.32

Step 3. Integrate program. See Figure 4.33 for the program for ticket
checking by ticket inspectors (I).

Figure 4.33

Write sprite
script

112

Content Result

Now I know the branch structure. ☆☆☆☆☆

I know the single and dual branch structure. ☆☆☆☆☆

I finished the task "Ticket checking by ticket
inspectors (I)".

☆☆☆☆☆

Self-Assessment Room

Modify the program "Ticket checking by ticket inspectors (I)", try to
substitute "if..., then...else..." with "if..., then…" to finish the task "Ticket
checking by ticket inspectors (I)".

113

-- Scheme for final acceptance

1. Nested branch structure

In program design, nested branch structure is a branch of the branch structure;
it includes a or many branch structure (s). See Figure 4.34 for the flow chart of
the nested branch structure. If meeting the condition 1, then judge the
condition 2 is met or not, or execute instruction 1. If meeting the condition 2,
then keep on judging the next, or execute instruction 2, and so on. If meeting
the judgment condition, then keep on judging the next, or execute the
corresponding instructions.

Figure 4.34

If the acceptance condition is
met at each link in contrast to
the construction sequence,
then the project is completed!

The shopping center is
almost completed, but how
to know it is completed?

 Section 3 Branch

Structure (2)

114

Now John goes to the construction site for acceptance of its shopping center.
According to the construction process, the overall expansion can be thought
ended only when all of the conditions for foundation, building construction,
decoration and device installation are met, see Figure 4.35.

Figure 4.35

2. Building of nested branch structure

In DobotBlock, we can nest "if..., then…" with "if..., then...else..." mutually to
come into a multi-branch structure with at least two paths. See Figure 4.36 for
one of the way to build nested branch structure.

Figure 4.36

115

See Figure 4.37 for part of the processes accepted by John on construction
site.

Figure 4.37

idea

 Let's think about it

 Is there any other way for block connection in nested branch
structure?

 Let's do it

 Program performing acceptance on construction site by other ways
of block connection.

116

1. Task release

Ticket checking by ticket inspectors (2): the ticket inspector will ask for height
before the student takes the bus. If the height is < or = 1.2m, then the student
can take the bus for free. If > 1.2m and < or = 1.5m, then ticket inspector will
ask the student to buy a half-price ticket. If > 1.5m, then ticket inspector will ask
the student to buy a full-price ticket.

2. Task analysis

The video about ticket checking by ticket inspectors shows asking for height,
entering the height, judging the height and deciding to buy ticket or not. Fill out
the flow chart of "Ticket checking by ticket inspectors (2)", see Figure 4.38.

Figure 4.38

Research Office

117

3. Script planning

Sprite Task description Block

1. Ticket inspector
asks for height.

2. Enter the height and
set the entered value
as the answer.

3. Judge if the student
needs to buy a ticket
based on the answer.

Step 1. Ticket inspector asks for height. Program to ask for student's
height in the Coding Area of sprite "Abby", see Figure 4.39.

Figure 4.39

Write sprite
script

(1) Add sprite "City Bus", delete "Sprite 1” in Sprite.

(2) Add and set sprite "Abby". Add sprite "Abby", set its size as 60; adjust
the sprite position on Stage (refer to "Ticket checking by ticket inspectors
(1)" taught on the second class).

Add sprites

Processing zone

118

Innovation Park

Step 2. Judge if the student needs to buy a ticket based on the answer,
see Figure 4.40.

Figure 4.40

Step 3. Integrate program. See Figure 4.41 for the program for ticket
checking by ticket inspectors (2).

Figure 4.41

Write sprite
script

119

Content Result

I know the nested branch structure. ☆☆☆☆☆

I’ve learned building of nested branch structure. ☆☆☆☆☆

I’ve finished the task "Ticket checking by ticket
inspectors (2)".

☆☆☆☆☆

Self-Assessment Room

Modify the program "Ticket checking by ticket inspectors (2)", try to use
"if..., then…" and "if..., then...else..." to finish the task "Ticket checking by
ticket inspectors (2)".

120

-- A wonderful circus show

John's new shopping center was completed as scheduled, and then John
invited the famous circus to do a grand opening show. It was a wonderful show;
there were Drums Conga by monkey and magic show elephant changing color,
and the most fascinating one was Dog Maze. Everyone was fascinated by the
animals, but John was curious that how did they communicate with each other
and with the magician on stage?

Mr. Lee told John that in our daily life, humans can communicate with each
other or with animals by language, body actions and even facial expression.
We can regard the specific contents communicated by above ways as a
message, and after receiving the message, the other side will give
corresponding response.

Then in program design, how to deliver messages between sprites, between
sprite and device and between devices? How does the sprite sense the
environment during programming?

In this chapter, let's learn about message instruction and sensing instruction.

Learning objectives

 Learn how to broadcast and receive messages
and sensing instructions as well as other related blocks.

 Experience to deliver messages and sense environment by
programming, to sense the charm of computer programming.

Chapter 5 Message

and Sensing

121

-- Monkey drumming and elephant changing color

1. Message

Message is an independent communication content delivered from the sender
to a or more object (s). And the process delivering messages is also called
message broadcasting. After broadcasting the message, the receiver will give
different responses.

In the above example, broadcasting that “Monkey begins to drum” is namely a
message, and all of the people on and off the stage and at front stage and
behind the scenes can receive the message, but only the monkey will begin to
drum after receiving it. Even then the elephant received the message, it will not
perform changing color.

So, what’s the message in program design?

In program design, message is a notice that can be received by all sprites on
Stage. After receiving the message, the sprite (or device) will give
corresponding responses and take actions.

Wow, what a wonderful show, Kelly!
The monkey drummed and the
elephant changed color as they
understand the instruction, amazing!

Yes, it was really fascinating!
Mr. Lee told me right now that
the dialogue between animals
and what the magician said to
the elephant are actually the
message.

Section 1 Message

Instruction

122

2. Broadcasting and receiving of message

(1) Broadcasting of message

1. Broadcasting block of message

In DobotBlock, we use "Broadcast message 1" and "Broadcast message 1 and
wait" to broadcast messages, see Figure 5.1.

Figure 5.1

2. Create new messages

In DobotBlock, click Events module, drag "Broadcast message 1" or
"Broadcast message 1 and wait" to Coding Area, click the inverted triangle
symbol on the right of the block and then click "New message" in the pull-down
menu. Then enter message name in the pop-up dialog box and click OK to
create new message. Create new message with "Broadcast message 1", see
Figure 5.2.

Figure 5.2

123

"Broadcast message 1" is very similar to "Broadcast message 1 and wait", but
the former will run program next immediately after broadcasting. The latter will,
after the broadcasting, run program next until running of all scripts receiving
the message.

For instance in the magic show elephant changing color, the program running
sequence is different when different message broadcasting blocks are used,
see Figure 5.3.

Figure 5.3

(2) Receiving of message

In DobotBlock, we use "When I receive message 1" to receive message, see
Figure 5.4; the sprite (or device) that has received the message will give
response and take actions as needed.

Figure 5.4

In DobotBlock, click Events module, drag "When I receive message 1" to
Coding Area, click the inverted triangle symbol on the right of the block and
then receive the message to be received in the pull-down menu, see Figure
5.5.

124

Figure 5.5

Taking the magic show elephant changing color as the example again, after
broadcasting "Change color", the sprite elephant will receive the message and
then change its color for 10 times, see Figure 5.6.

Figure 5.6

1. Task release

Circus show: monkey makes opening introduction and then drums. After the
show, monkey introduces the next show, namely dinosaur's dance.

Research Office

 Let's do it

 Run the program "Magic Show", observe the change to sprite on the
stage.

 After running the program, substitute the "Broadcast message 1"
with "Broadcast message 1 and wait" and then run the program
again.

125

2. Task analysis

There are three sprites in the circus show: monkey, drums conga and dinosaur.
See Figure 5.7 for the action analysis of each of them, and see Figure 5.8 for
the process of the circus show.

Figure 5.7

Figure 5.8

126

3. Script planning

Sprite Task description Block

1. Monkey makes
opening introduction.

2. Broadcast "Begin to
drum" and then begin to
drum.

3. Introduce the next
show and then hide.

1. Receive message
"Begin to drum" and then
change the costumes and
start sound.

2. Receive message
"Begin to dance" and then
hide.

1. Hide before receiving
message "Begin to
dance".

2. Receive message
"Begin to dance" and then
show.

3. Start sound, and
dinosaur begins to dance.

127

Step 1. Add stage backdrop, see Figure 5.9 for the steps.

Figure 5.9

Step 2. Delete the default backdrop. Delete backdrop 1 on the page of
Backdrops, see Figure 5.10.

Figure 5.10

Add backdrop and
sprite

Processing zone

128

Step 3: Add sprite. Add sprites "Monkey", "Drums Conga" and
"Dinosaur5" in Sprite, delete the default sprite, see Figure 5.11 for the
position of sprites on the stage.

Figure 5.11 Position of Sprites on Stage.

Step 4. Delete costumes. Monkey needs only two costumes during
drumming: handing up and waving hand downward; delete the third
costume of monkey, see Figure 5.12.

Figure 5.12

Add backdrop and
sprite

129

Step 1. Write the script of monkey.

Monkey makes opening introduction before its show, see Figure 5.13.

Figure 5.13 Opening Introduction

After broadcasting "Begin to drum", then monkey begins to drum, see
Figure 5.14.

Figure 5.14

Introduce the next show, and then hide, see Figure 5.15.

Figure 5.15

Write sprite
script

130

Integrate code. After the opening introduction by monkey, the program
broadcasts, and monkey begins to drum. After the performance, monkey
introduces the next show and then hide, see Figure 5.16.

Figure 5.16

Step 2. Write script of Drums Conga.

Receive message "Begin to drum" and then change the costumes and
start sound, see Figure 5.17.

Figure 5.17

Write sprite
script

131

Innovation park

Modify the video of "circus show": there are two shows in the original
program. Now we need to add another one "poetry reading"; choose sprite
"Starfish" to read poems on its own decision.

After receiving the message "Begin to dance", the "Drums Conga" then
hides, see Figure 5.18.

Figure 5.18

Step 3. Write script of dinosaur.

Click Sprite and sprite "Dinosaur5", and then begin to write script of
dinosaur.

Dinosaur hides before receiving message "Begin to dance". After
receiving the message "Begin to dance", Dinosaur then shows and
begins to dance, see Figure 5.19.

Figure 5.19

Write sprite
script

132

Content Result

Now I know what’s message. ☆☆☆☆☆

I’ve learned the block "broadcasting of
message" and its use.

☆☆☆☆☆

I’ve learned the block "receiving of message"
and its use.

☆☆☆☆☆

I’ve finished "circus show". ☆☆☆☆☆

Self-Assessment Room

133

-- Maze Escape

Let's repeat the thrilling and exciting process by programming!

1. Setting Dog!

After start of the performance, we need to set Dog at a corner of the maze.
When setting the sprite, we need to move mouse to the position of the sprite,
mouse down the left key and drag the sprite to the designated place, and then
release the left key of mouse.

We can find "Mouse down?” from Sensing module in software block area, see
Figure 5.20.

Figure 5.20

Choose the position in maze, mouse down, and then the Dog will be set at the
position mouse-down; see Figure 5.21 for some programs.

The dog is so
awesome that no
matter where you put
him in the maze, it can
always get out!

Indeed, the dog senses the
environment by "touching” and
then gives response; it is
important for sprite interaction in
program design!

Section 2 Sensing

Instruction

134

Figure 5.21

2. Navigating the maze of Dog

After setting Dog, we can command the Dog to begin to navigate the maze by
up arrow, down arrow, left arrow and right arrow. We can find “Key (space)
pressed?” from Sensing module in software block area. Click the white
inverted triangle symbol, and then we can see several options, see Figure
5.22.

Figure 5.22

Part of the program for dog walking is shown in figure 5.23.

135

Figure 5.23

3. Avoiding getting through black wall

How to keep Dog from getting through black wall in maze.

We can find "Touching color ()?" block from Sensing module in software block
area. Click the elliptical position on right of the block, and then we can choose
the color, saturation and brightness, see Figure 5.24.

Figure 5.24

If Dog attempts to get through black wall, he will wait for 1s and then move
back for 2 steps, see Figure 5.25.

Figure 5.25

136

4. Arriving Victory Gate

When controlling Dog to touch the exit, the Dog arrives at the Victory Gate. We
can find "Touching (mouse-pointer)?" from the sensing block in software block
area, click the white inverted triangle symbol, then we can see two basic
options "mouse-pointer" and "edge". When adding new sprite on stage, the
block will add the option of new sprite automatically, see Figure 5.26.

Figure 5.26

In the example above, some program for arriving at Victory Gate is shown in
Figure 5.27.

Figure 5.27

 Let's do it

 Run the program "Dog Maze.sb3".

137

1. Task release

Shark eating fish: there are different kinds of fishes in the vast sea, and when a
shark meets a fish, the shark will eat the fish. Count the number of fish eaten
by shark within given time.

2. Task analysis

We can divide the game into three parts: number of fish eaten, game time and
sprite control. See Figure 5.28 for task analysis of shark eating fish.

Figure 5.28

See Figure 5.29 for flow chart of shark eating fish.

Shark

eating fish

Number

of fish

eaten

Set

Time

1. Create variable "Number of fish

eaten" and count the number.

(1) Shark eats fish

Sprite

Control

2. Shark

meets with

fish

(2) Number of fish eaten

increases

1. Create variable "Time" and set the variable "Time"

as 0.

2. Every second, the time increases

by 1; when the time is 60s, the game

ends.

1.

Shark

2. Fish

Control the motion direction of

shark with Direction key.

(1) Show randomly every 2s.

(2) Fish moves in stage, and will

hide when meeting a shark.

Research Office

138

Figure 5.29

139

3. Script planning

Sprite Task description Block

1. Count number
of fish eaten.

2. Set the time

3. Control the
motion direction
of shark with
Direction key.

1. Show at
random position
of stage every 2s.

140

Sprite Task description Block

2. Fish moves
around stage.
Fish hides when
meeting a shark.

141

Step 1. Add backdrop "Underwater 1" and delete the default backdrop.

Step 2: Add sprite. Add sprite "Shark 2" and "Fish" in Sprite, and then
delete the default sprite; change the size of sprite "Fish" into 60, see
Figure 5.30 for stage and sprites on the stage.

Figure 5.30

Add backdrop and
sprite

Processing zone

142

Step 1. Write the script of shark.

Number of fish eaten. Create variable "Number of fish eaten" to count
the number of fish eaten by shark. The variable "Number of fish eaten"
will increase by 1 each time after shark eats a fish, see Figure 5.32.

Figure 5.32

Write sprite script

Click "Variable" module and "Set up a variable", enter variable name
"Number of fish eaten" and click OK. Create variable "Time" with the
same method, see Figure 5.31 for the two variables.

Figure 5.31

Create
variable

143

Set the time. Create variable "Time" to count the game time. It is only
60s for each game. When the game time is used out, Shark will say the
total number of fish eaten, and then stop all scripts, see Figure 5.33.

Figure 5.33

Control the motion direction of shark. Shark can move up and down and
left and right. We can control the motion direction of shark with Direction
key, see Figure 5.34.

Figure 5.34

Write sprite
script

144

Step 2. Click sprite "Fish", and then begin to write script of fish.
To make fish show on the stage all the time, we set it to show every 2s,
see Figure 5.35.

Figure 5.35

Fish moves on stage and hides when meeting with a shark, see Figure
5.36.

Figure 5.36

Write sprite script

145

Content Result

I know the four sensing blocks. ☆☆☆☆☆

I've learned how to use the four sensing
blocks.

☆☆☆☆☆

I’ve finished "shark eats fish". ☆☆☆☆☆

Self-Assessment Room

Modify the game shark eating fish: add an effect that shark will get large
each time after eating a fish; the more shark eats, the larger it will be.
Boys and girls, lets' challenge to see who has the largest shark.

Innovation Park

146

-- A new medical project in the town

With the development of technology, self-service rises, and people change
their way of shopping. There are already many self-service systems in John's
smart supermarket. In order to provide more convenient medical services to
residents around, John wants to add an auto medicine vending system next to
his supermarket.

In the field of medicine circulation, the auto medicine vending system is quick,
convenient and intelligent, allowing people to buy the medicines they need at
any time of the day. So in this chapter, let's comprehensively apply what we’ve
learned about programming to build an auto medicine vending system.

Learning objectives

Chapter 6
Comprehensive Project

 Design the interactive interface of an auto
medicine vending system to cultivate
aesthetic consciousness and design ability

 Write the program of an auto medicine
vending system to improve programming
ability

 Optimize the auto medicine vending system
and develop engineering thinking

147

Kelly, it would be great if there is an
auto medicine vending system next
to my supermarket. Users nearby
could purchase medicines
themselves anytime they want
through the interactive interface of
the system.

That's a great idea! No salesmen
would be required for shopping.
This will help reduce labor costs
and make people's lives better!

Auto Medicine Vending

System

148

1. Task release

Design and complete an auto medicine vending system with software
interaction and robot control.

Requirements: For the software interaction part, users can click a button to
enter the pharmacy, choose medicines, and delete those chose by mistake.
The program will show the Total Price and Medicine List on Purchase Interface
during purchasing, and then come to the End Interface after purchase. There
are Start Interface, Purchase Interface and End Interface on the software
interaction interface, see Figure 6.2.

Research Office

 Let's discuss it

 Boys and girls, have you ever seen an auto vending system?
Figure 6.1 shows an auto vending system in our life. Have a
look about it, and let’s think what menu interfaces will you need
to design on the auto vending system? What interactive
functions will you need to realize through the program? How to
control the robot to take the corresponding medicines
automatically?

Figure 6.1

149

Figure 6.2

As for the robot control part, the robot takes medicine according to the
"Medicine List", and then puts them in the Laydown Area. See Figure 6.3 for
position of device.

Figure 6.3

2. Task analysis

There are six steps to build an auto medicine vending system, and see Figure
6.4 for the overall task flow.

Figure 6.4

Step 1. Design backdrop. Design "Backdrop of Start Interface", "Backdrop of Purchase
Interface" and "Backdrop of End Interface" respectively, see Figure 6.5.

150

Figure 6.5

Step 2. Program "Start Interface". Analyze tasks of each sprite in the "Start
Interface" and program for each one. See Figure 6.6 for the work flow chart of
"Start Interface".

Figure 6.6

 Let's do it
 Refer to the work flow chart of "Start Interface", and analyze and

draw the work flow chart of "Purchase Interface", "End Interface"
and "Auto Medicine Taking".

151

3. Script planning

Sprite and
device

Task description Block

1. Initialize Start
Interface.

2. Switch to
Purchase
Interface and
hide, show
variables and a
list, and then
broadcast "Enter
the pharmacy”.

1. Hide Start
Interface.

2. When I receive
"Enter the
pharmacy", show
at the designated
place.

Choose
medicine

Enter the
pharmacy

152

Sprite and
device

Task description Block

3. When clicked,
broadcast
"Choose
medicine".

4. When I receive
"Pay the bill",
hide.

1. Hide Start
Interface

2. Show at the
designated place
after receiving the
message "Enter
the pharmacy"

3. When clicked,
delete the last
item of Medicine
List.

Delete
medicine

153

Sprite and
device

Task description Block

4. When I receive
"Pay the bill",
hide.

1. Hide Start
Interface

2. Show at the
designated place
after receiving the
message "Enter
the pharmacy"

3. When I receive
"Choose
medicine", click
the sprite
medicine, the
sprite medicine
will change color
effect. Change
the Total Price
according to the
medicine price
and add the
medicine to
Medicine List.

4. When I receive
"Pay the bill",
hide, and stop
calculating the
price.

1. Hide Start
Interface

Pay the
bill

Anti-Inflammatory
Medicine

Anti-fever
Medicine

Headache
Medicine

Cold Medicine

154

Sprite and
device

Task description Block

2. Show at the
designated place
after receiving the
message "Enter
the pharmacy"

3. When clicked,
broadcast "Pay
the bill", switch
backdrop to End
Interface, and
hide sprites,
variables and list.

1. Initialization

2. Identify the
name of the first
item in "Medicine
List", take the
corresponding
medicine and put
it in Laydown
Area.

3. Delete the first
item in Medicine
List

155

Find 8 sprite files of “Enter the Pharmacy", "Cold Medicine",
"Anti-inflammatory Medicine", "Anti-fever Medicine", "Headache
Medicine", "Choose Medicine", "Delete Medicine" and "Pay the Bill” in
"Graphical Programming and Robots \ Chapter 4", (See Figure 6.8 for
the 8 sprites), import them into Sprite, and delete the default sprite
"Sprite 1”.

Figure 6.8

Add sprite

Design "Backdrop of Start Interface", "Backdrop of Purchase
Interface" and "Backdrop of End Interface" respectively, see Figure
6.5. Find the design elements in "Graphical Programming and Robots
\ Chapter 4" and design three interface backdrops; the design
elements are shown in Figure 6.7.

Figure 6.7

Design interface
backdrop

Processing zone

156

Step 1. Program for all sprites in the Start Interface.

Switch the stage backdrop to the backdrop of “Start Interface", set the
sprite "Enter the Pharmacy" to show and the rest sprites to hide.
Create and initialize variables "Total Price" and "Medicine List" in the
script of sprite "Enter the Pharmacy", see Figure 6.9. When sprite
"Enter the Pharmacy" is clicked, enter "Purchase Interface" and hide
sprite "Enter the Pharmacy", see Figure 6.10. Now boys and girls,
program for rest sprites on "Start Interface" by yourselves according to
task analysis and script planning.

Figure 6.9

Figure 6.10

Write sprite script

157

Step 2. Program for all sprites on "Purchase Interface".

We can see there are sprites of four medicines, "Cold Medicine",
"Anti-Inflammatory Medicine", "Anti-fever Medicine" and "Headache
Medicine", and sprites "Choose Medicine", "Delete Medicine", "Pay the
Bill" as well as variable "Total Price" and "Medicine List" on the
"Purchase Interface". Put corresponding medicines in the
corresponding position of "Purchase Interface" and show. Click sprite
"Choose Medicine" to start choosing medicines. When we click sprites
of corresponding medicines, the Total Price and Medicine List will
change accordingly. Click sprite "Delete Medicine", then we can delete
medicines on the Medicine List. Click and broadcast "Pay the bill", all
sprites will hide after receiving the message "Pay the bill", and the
backdrop will switch to the "End Interface". Here we take the cold
medicine program on "Purchase Interface" as an example, see Figure
6.11.

Figure 6.11

Write sprite script

158

We can program for other medicine sprites with the same ideas.
However, it is important to note that different medicines have different
prices. After choosing a medicine, the variable "Total Price” will
increase by the amount of the medicine, and also the program will add
an element the same as the medicine name to "Medicine List". So let's
program for other medicines referring to the "Cold Medicine" program.

Step 3. Program for all sprites on "End Interface".

Switch the stage backdrop to the backdrop of "End Interface", hide all
sprites, stop other scripts of sprite medicine, and hide variables and list.
The program for sprite "Cold Medicine" on "Purchase Interface" is
shown in Figure 6.12. Now boys and girls, please program for rest
sprites on "End Interface" according to task analysis and script
planning.

Figure 6.12

Step 4. Program for Auto Medicine Taking.

The key in the program of "Auto Medicine Taking" is to identify each
item in the "Medicine List", and then take the medicine according to the
"Medicine List", see Figure 6.13 for the program. Boys and girls, lets'
debug and improve the program.

Write sprite script

159

Figure 6.13

Write sprite script

160

Show the group scheme to your teachers and classmates in groups,
and share your experience learned from this chapter.

Let's share and
summarize

1. Run the program of "Auto medicine vending system”, discuss
about its optimization in groups, record and then fill in Table 6.1.

Table 6.1 Record of Optimization Scheme

No.
Optimization

Scheme

2. Discuss about the scheme optimization steps, and record them
by flow chart.

3. Write the program for optimization scheme.

Capacity
promotion

161

Content Result

I’ve designed the interactive interface of an
auto medicine vending system.

☆☆☆☆☆

I’ve realized the communication between
computer and robot.

☆☆☆☆☆

I’ve wrote the program "Auto medicine vending
system".

☆☆☆☆☆

I’ve optimized the project "Auto medicine
vending system".

☆☆☆☆☆

Self-Assessment

