

CATALOGUE

Experiment 1: Smart Sowing ... 1

Task 1: Sow Three Times .. 3

Task 2: Sow Multiple Times ... 17

Experiment 2: Automatic Supplementary Lighting ... 24

Task 1: Make the LED Running Light .. 26

Task 2: Make the Breathing Light ... 31

Task 3: Detect Light Intensity ... 35

 Task 4: Adjust Light Intensity ... 35

Experiment 3: Smart Temperature Control ... 47

Task 1: Read the Values of the Temperature and Humidity Sensor .. 49

Task 2: Display the Parameters of the Temperature and Humidity Sensor through the LCD 54

 Task 3: Design the Cooling System .. 60

 Task 4: Design the Heating System... 66

 Task 5: Design the Temperature Control System .. 72

Experiment 4: Watering ... 79

Task 1: Get the Soil Humidity Value ... 82

Task 2: Display the Soil Humidity on LCD1602 .. 85

Task 3: Control the Pump to Draw Water ... 88

 Task 4: Design the End of the Robotic Arm .. 90

 Task 5: Build the Automatic Watering System .. 96

Experiment 5: Intelligent Picking .. 101

Task 1: Pick One Radish ... 103

Task 2: Pick One Row of Radishes ... 110

Task 3: Pick One Field of Radishes .. 115

Task 4: Pick Two Fields of Radishes... 121

Experiment 6: Automatic Sorting .. 125

Task 1: Design the Radish Model ... 128

Task 2: Design the Radish Basket Model .. 132

 Task 3: Display the RGB Value on the Serial Port .. 143

 Task 4: Sort the Radish ... 148

1

LESSON

Team name: Team member: Date:

 Learn how to use the user interface (UI) of Arduino IDE with Arduino IDE.

 Learn how to use the Magician Lite-related APIs by programming the

robotic arm to automatically sow three times.

 Learn how to use the judgment structure by programming the robotic arm

to automatically sow three times.

Objective

Overview

In conventional farming, farmers generally have to bend to plough and

sow. When sowing, they have to squat on the ground and place the

seeds in the soil at an even distance, which is slow and tiring work.

Nowadays, science and technology are becoming more and more

advanced, people have invented high-tech sowers to overturn

traditional sowing methods, as shown in Figure 1.1.

Figure 1.1 Two sowing methods

This experiment will control the robotic arm to automatically sow. Let’s

explore how to achieve it!

 Experiment 1

Smart Sowing

2

 Learn how to use the loop structure by programming the robotic arm to

automatically sow nine times.

Equipment Picture Name Quantity

Dobot Magician Lite

robotic arm
1

Suction cup kit 1

Tape-C cable 1

Power adapter 1

Arduino Mega 2560

control board
1

Arduino shield

expansion board
1

USB square port cable

(Type-B cable)
1

10-Pin DuPont adapter

cable
1

Equipment

3

Equipment Picture Name Quantity

Farmland 1

Seeds Handful

 Take care when using electricity.

 Before the experiment, check whether the experiment equipment is

complete and intact. If there is any omission or damage, please report to

the teacher.

 Any specific operations in the experiment shall be performed according to

the experiment manual. If you have any questions, please promptly ask

the teacher.

 During the experiment, the joints will start to work as the robotic arms are

powered on. In that case, do not move the joints of the robotic arms hard

if you do not press the unlock key.

 Report any device fault during the experiment to your teacher in a timely

manner, and do not handle it yourself.

 Arrange all devices after the experiment. You shall not leave the lab

before check by the group leader.

The robotic arm automatically sows three times. For this, we can think that it

repeats sowing three times. Of course, during programming, note that the

sowing position will change each time.

1. Analysis

Analyze the steps to sow once, and think about any method of sowing

three times. Then, fill in the blanks in the table below according to your

analysis.

Requirements

Task 1: Sow Three Times

4

2. Steps

(1) Prepare Hardware

Step 1: Place the equipment on the corresponding positions, as shown in

Figure 1.2.

Figure 1.2 Placement positions

Step 2: Connect the components of the robotic arm sowing system, as

shown in Figure 1.3.

Step 1: Prepare Hardware.

Step 2: Open Arduino IDE and select the corresponding development

board and port.

Step 3: Design the program: Move to the seed grabbing position

Open the suction cup to suck the seed

(Follow the prompts to complete the remaining steps)

Step 4: Implement the method for sowing three times:

5

Figure 1.3 Connection diagram of the robotic arm sowing system

Step 3: Prepare the related equipment, and power on the robotic arm, as

shown in Figure 1.4. Connect the Arduino Mega 2560 control board with

Arduino shield expansion board to the computer, as shown in Figure 1.5.

The connection with the robotic arm is shown in Figure 1.6.

Figure 1.4 Connecting

the robotic arm to a

power supply

Figure 1.5 Connecting the control board to the PC

6

Figure 1.6 Connecting the control board and the robotic arm

(2) Design Program

Step 1: Check the port, connect the data cable, right-click "This PC", and

click Manage in the pop-up window, as shown in Figure 1.7.

Figure 1.7 Clicking Computer Management

Step 2: Click Manage, and a window appears, as shown in Figure 1.8.

Click Device Manager on the left and find Ports (COM & LPT). Click the

drop-down triangle to display the information. You can see that the COM

port pops up in brackets.

7

Figure 1.8 COM port

Step 3: Enable the Arduino IDE. The main interface of the software is

shown in Figure 1.9.

8

Figure 1.9 Arduino IDE interface

Step 4: In the menu bar of the software interface, click Tools, and modify

the information in the red box in Figure 1.10 (respectively involving the

board, processor, and port). Here, the port information is the COM port

value you have just queried in Device Manager.

Figure 1.10 Software settings

Step 5: Click File in the menu bar, select Preferences, and tick Display

line numbers in the preferences, as shown in Figure 1.11. Thus, as you

write code, the left side of the software interface displays the code line

number, as shown in Figure 1.12.

9

Figure 1.11 Displaying line numbers

Figure 1.12 Displaying the code line number

Step 6: Analyze how the robotic arm automatically sows three times.

Then, draw the program flow chart, as shown in Figure 1.13.

10

Start

Initialize

If sowing happens three

times?

Move to where

seeds can be

grabbed

Open the suction

cup and suck the

seeds

Move to sowing

position

Turn off the suction

cup to release the

seeds

Move up the robotic

arm by 30mm

Change the line

spacing of sowing

Delay for

500milliseconds

Record the total

sowing times

End

True

False

Figure 1.13 Flow chart of sowing three times

Step 7: Set the header file. The header of the program is the header file.

The header file as the carrier file contains the functions and data interface

declarations, and plays the role of a toolbox. Therefore, the header file

must have some statements. The header file of the robotic arm is:

#include <MagicianLite.h>, and the programming method is as follows:

1 #include<MagicianLite.h>//header file

11

Step 8: Define a variable. Define the integer variable num. Its initial value

is 0. After it loops once, the value increases by 60. Here, 60 indicates the

sowing spacing.

2 int num=0;

Step 9: Set the setup function.

1) Initialize the robotic arm. The corresponding program statement is:

3

4

5

voidsetup(){

MagicianLite_Init(); //Initialize the robotic arm

}

2) Set both movement speed percentage and acceleration percentage

of the robotic arm to 80.

6

7

MagicianLite_SetPTPCommonParams(80,80);

//Set movement speed and acceleration percentage of the robotic arm

3) Make the robotic arm move above the seed position.

8

9

10

11

12

13

14

voidsetup(){

MagicianLite_Init(); //Initialize the robotic arm

MagicianLite_SetPTPCommonParams(80,80);

//Set movement speed and acceleration percentage of the robotic arm

MagicianLite_SetPTPCmd(JUMP_XYZ, 275,80,-43+30,0);

//Move above the seed grabbing position

}

Step 10: Set the main function of the loop.

1) “if” statement: If you control the robotic arm to sow three times

automatically, the sowing spacing is 60 mm. Here, num = 0

indicates the first sowing, num = 60 the second sowing, num = 120

the third sowing, and num = 180 sowing stoppage.

15

16

17

voidloop(){

if(num<180) //Sowing three times

}

2) Sowing process: Move to the seed grabbing position Open the

suction cup Move to the sowing position Close the

suction cup. The programming method is as follows:

12

18

19

20

21

22

23

MagicianLite_SetPTPCmd(JUMP_XYZ, 275,80,-43,0);//Move to seed grabbing

position

MagicianLite_SetEndEffectorSuctionCup(true); //Open the suction cup

delay(200);

MagicianLite_SetPTPCmd(JUMP_XYZ, 327-num,-39, -9, 0);//Sowing position

MagicianLite_SetEndEffectorSuctionCup(false); //Close the suction cup

delay(200);

Step 11: Raise the robotic arm by 30 mm each time it finishes sowing.

24

25

MagicianLite_SetPTPCmd(JUMP_XYZ, 327,-39,-9+30,0);

//The robotic arm is lifted upward by 30 mm

Step 12: Increase the variable num by 60.

26

27

num=num+60; //num increased by 60 mm, sowing spacing in X axis direction

delay(500);

Step 13: According to the analysis of the above steps, integrate the

program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#include<MagicianLite.h>//Header file

int num=0;

Void setup(){

MagicianLite_Init(); //Initialize the robotic arm

MagicianLite_SetPTPCommonParams(80,80);

//Set robotic arm movement speed and acceleration percentage

MagicianLite_SetPTPCmd(JUMP_XYZ, 275,80,-43+30,0);

//Move above the seed grabbing position

}

Void loop(){

if(num<180){//Sowing three times

MagicianLite_SetPTPCmd(JUMP_XYZ,275,80,-43,0); //Move to seed grabbing position

MagicianLite_SetEndEffectorSuctionCup(true); //Open the suction cup

delay(200);

MagicianLite_SetPTPCmd(JUMP_XYZ, 327-num,-39, -9, 0); //sowing position

MagicianLite_SetEndEffectorSuctionCup(false); //Close the suction cup

delay(200);

 MagicianLite_SetPTPCmd(MOVL_XYZ, 327-num, -39, -9+30, 0);

//The robotic arm is lifted upward by 30 mm

num=num+60; //num is increased by 60 mm, and the sowing spacing in X axis direction

delay(500);

}

}

13

Step 14: Write the code, compile the program, click the “√” symbol in the

upper left corner of the Arduino interface, and then check the compilation,

as shown in Figure 1.14.

Figure 1.14 Compiling the program

Step 15: Upload the program to the main control board if there is no error

in the code. Click the "→" symbol in the upper left corner of the Arduino

interface, and then check the upload status. When the status bar displays

"Uploaded successfully", your program is burned, as shown in Figure

1.15. From the board you can view that a small green LED flashes every

500 ms, as set by the program.

14

Figure 1.15 Uploading the program and viewing the upload result

15

Get-point method: Call the API "MagicianLite_GetPose ()", and the

serial port monitor can return the real-time coordinate point of the

robotic arm.

#include<MagicianLite.h>

Void setup()

{

Serial.begin(115200);

MagicianLite_Init();

}

Void loop()

{

 //MagicianLite_SetPTPCmd(JUMP_XYZ,200,0,30,0);

float x = MagicianLite_GetPose(X);

float y = MagicianLite_GetPose(Y);

float z = MagicianLite_GetPose(Z);

Serial.println(x);

Serial.println(y);

Serial.println(z);

}

16

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve built the hardware

I’ve checked the port

I’ve completed the task of displaying the line number of the

code

I’ve set header files and defining variables

Single-line comment: Single-line comments are usually used to

explain a line of code in a program, which is indicated by a "//" symbol,

followed by the content of the comment. The sample code is as follows:

int ledPin = 2; // the number of the LED pin

Multi-line comments: Multi-line comments, starting with the symbol "/

" and ending with the symbol "/". The sample code is as follows:

/*Serial.print (" *C ");

Serial.print (hif);

Serial.println (" *F");*/

(1) How do we check the port number on the computer when the data

cable is connected? ____________________________________

(2) What actions shall the robotic arm perform during sowing? _____

(3) Which APIs can open and close the suction cup? _____________

17

Assessment Content
Completion

Status

I’ve set up the setup function

I’ve programmed the robotic arm to automatically sow three

times

In the last task we completed sowing three times. The farmland in the

experiment was sowed according to three rows and three columns. That is, we

completed one row of sowing in Task 1. In this task, we must sow nine times

according to three rows and three columns.

1. Analysis

Review the method of sowing three times and think about the steps to

sow nine times. Then, fill in the blanks in the table below according to

your analysis.

2. Steps

(1) Prepare Hardware

Step 1: Place the equipment in the corresponding positions. See Task 1

for the position diagram.

Step 2: See Task 1 for the connection diagram of the robotic arm sowing

system.

Task 2: Sow Multiple Times

Step 1: Prepare Hardware.

Step 2: Open Arduino IDE and select the corresponding development

board and port.

Step 3: Design the program: Move to the seed grabbing position.

Open the suction cup to suck the seeds Move to the sowing

position, close the sucker and lower the seed, change the spacing

between the sowing rows, repeat the sowing three times

(implementation steps for three sowings)

Step 4: Think about the steps to achieve sowing nine times:

18

Step 3: Connect the Arduino Mega 2560 control board with the Arduino

shield expansion board, and power on the robotic arm. See Task 1 for the

physical connection diagram.

(2) Design Program

Step 1: Analyze the steps to sow nine times, and draw the program flow

chart, as shown in Figure 1.16.

19

Start

Initialize

If sowing happens nine

times?

Move to where

seeds can be

grabbed

Open the suction

cup and suck the

seeds

Move to sowing

position

Turn off the suction

cup to release the

seeds

Move up the robotic

arm by 30mm

Change the line

spacing of sowing

If the first column is

sowed?

Change the line

spacing of sowing

Change the column

spacing of sowing

Delay for

500miliseconds

Record the total

sowing times

End

True

True

False

False

Figure 1.16 Flow chart of sowing nine times

Step 2: Set the header file. For this, see Task 1.

Step 3: Define variables. Define an integer variable i, and record the

number of sowing times; define the integer variable num to control the

20

sowing distance in the X axis direction; define the integer variable j to

control the sowing distance in the Y axis direction.

1

2

3

inti=0;//Record the number of sowing times

int num=0;//Control the sowing spacing in X-axis

int j=0;//Control the sowing spacing in Y-axis

Step 4: Set up the setup function. For this, see Task 1. Write the code

yourselves.

Step 5: Set the main function of the loop.

1) Use the “while” loop statement to sow nine times. Therefore, sowing

must loop nine times.

4

5

6

voidloop(){

While(i<9)

}

2) Write the code to sow.

7

8

9

10

11

12

13

14

MagicianLite_SetPTPCmd(JUMP_XYZ, 275,80,-43,0); //Move to seed

grabbing position

MagicianLite_SetEndEffectorSuctionCup(true); //Open the suction cup

delay(200);

MagicianLite_SetPTPCmd(JUMP_XYZ, 327-num, -39-j, -9, 0);//sowing position

MagicianLite_SetEndEffectorSuctionCup(false); //Close the suction cup

delay(200);

MagicianLite_SetPTPCmd(MOVL_XYZ, 327-num,-39-j,-9+30, 0);

//The robotic arm is lifted upward by 30 mm

3) Set the variable. Num increases by 60 for each sowing, and each

column has three sowing positions, so when num is 120, the robotic

arm sows three times; when num is 180, num is set to 0, j increases

by 60, and the robotic arm will sow in the next column. The variable

i records the total number of sowing times, which does not exceed 9

21

15

16

17

18

19

20

21

22

23

num=num+60;//Increase num by 60, sowing spacing in X axis direction

if(num==180){

num=0;

j=j+60;

}

delay(500);

i=i+1;

}

}

Step 6: According to the analysis of the above steps, integrate the

program.

22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

#include<MagicianLite.h>// Header file

inti=0; //Control the robotic arm sow in X-axis

intnum=0; //The variable num is used to control the sowing spacing

intj=0; //Record the number of sowing times voidsetup()

{

MagicianLite_Init(); //Initialize the robotic arm

MagicianLite_SetPTPCommonParams(80,80); //Set the robotic arm motion ratio

MagicianLite_SetPTPCmd(JUMP_XYZ,275,80,-43+30,0);

//Robotic arm moves above seed position

}

voidloop()

{

while(i<9) //Sowing nine times

 {

MagicianLite_SetPTPCmd(JUMP_XYZ, 275, 80, -43, 0);

// Move to the seed grabbing position

MagicianLite_SetEndEffectorSuctionCup(true); //Open the suction cup

delay(200);

MagicianLite_SetPTPCmd(JUMP_XYZ, 327-num, -39-j, -9, 0);

// Sowing position

MagicianLite_SetEndEffectorSuctionCup(false);//Close the suction cup

delay(200);

MagicianLite_SetPTPCmd(MOVL_XYZ, 327-num,-39-j,-9+30, 0);

//The robotic arm is lifted upward by 30 mm

 num=num+60; //Increase num by 60, sowing spacing in X axis direction

if(num==180)

 {

 num=0;

 j=j+60;

}

delay(500);

i=i+1;

}

}

Step 7: Compile the program and upload the program to the Arduino

control board.

23

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve written the steps to sow nine times

I’ve set header files and defined variables

I’ve set the setup function

I’ve allowed the robotic arm to automatically sow nine times

Supposing that the farmland is sowed according to four rows and

four columns, totalling 16 sowing positions, and the sowing spacing is still

60, how do you modify this program?

(1) Meanings of the three variables i, j and num: ________________

(2) Summarize the usage of the “while” loop statement: ___________

(3) Summarize the usage of the judgment structure “if” statement: __

(4) API for point-to-point motion of the end of the robotic arm: ______

24

LESSON

Team name: Team member: Date:

 Learn the control instructions of LED lights by controlling the LED to turn

on and off.

 Explore the lighting sequence of LED running lights by making LED

running lights.

 Explore the control method of LED breathing lights by making breathing

lights.

 Understand how light sensors work by using light sensors to detect light

intensity.

 Explore the relationship between light intensity and LED light brightness

by using a light sensor to adjust light intensity.

Overview

We know that plant growth depends on photosynthesis. In the farm, when

light is insufficient, the chlorophyll formation of crops is hindered, and

photosynthesis is affected, resulting in weak, yellowing, fallen leaves, and

falling flowers. When light is too strong, it is easy to cause physiological

damage to crops. For example, cucumbers, eggplants, tomatoes and so

on are prone to leaf burns when light is too strong. This experiment allows

crops to receive sufficient and appropriate light intensity by detecting and

adjusting the light intensity of the farm. Next, let's make the LED running

lights and breathing light to detect and adjust light intensity.

Objective

 Experiment 2

Automatic Supplementary
Lighting

25

 Learn the analog data and understand its range by adjusting light

intensity through programming,

Equipment Picture Name Quantity

Arduino

intelligent control

board

1

USB square port

cable
1

3-pin DuPont head

adapter
Several

Light sensor 1

Red LED light 1

Green LED light 1

Blue LED light 1

 Take care when using electricity.

 Before the experiment, check whether the experiment equipment is

complete and intact. If there is any omission or damage, please report to

the teacher.

Requirements

Equipment

26

 Any specific operations in the experiment shall be performed according to

the experiment manual. If you have any questions, please promptly ask

the teacher.

 During the experiment, the joints will start to work as the robotic arms are

powered on. In that case, do not move the joints of the robotic arms hard

if you do not press the unlock key.

 Report any device fault during the experiment to your teacher in a timely

manner, and do not handle it yourself.

 Arrange all devices after the experiment. You shall not leave the lab

before check by the group leader.

With the development of science and technology, people are more and more

aware of the importance of advertising. More and more colorful and innovative

LED advertising films are flooding public places in cities, adding dazzling and

bright colors. The dynamic display of these LED advertising billboards is based

on the principle of running lights. Next, let's try making LED running lights.

1. Analysis

Try analyzing the sequence of turning on/off LED running

lights.

2. Steps

(1) Prepare Hardware

Step 1: Connect the LED running lights, as shown in Figure 2.1.

Task 1: Make the LED Running Light

(1) Turn on the red LED and turn off _________________________ .

(2) ___ .

(3) ___ .

27

Figure 2.1 Equipment connection diagram

Step 2: Prepare the experiment equipment and connect it. The physical

connection is shown in Figure 2.2.

Figure 2.2 Physical connection diagram

(2) Design Program

Step 1: Analyze the implementation method of LED running lights, and

read their flow chart, as shown in Figure 2.3.

28

Start

Initialize the

setting

Make the red LED

light come on

Make the red LED

light go off

Make the green

LED light come on

Make the green

LED light go off

Make the blue

LED light come on

Make the blue

LED light go off

Figure 2.3 Flow chart of LED running lights

Step 2: Perform Initial Setup.

1) Set the baud rate of the serial port to 115200, and allow signals to

have the same frequency of sending and receiving. That is, ensure

the consistent frequency between the computer and the Arduino

control board. The programming method is as follows:

1

2

3

voidsetup()

{

Serial.begin(115200); // Set serial baud rate

2) Set the input/output mode of the LED light port. Set each LED light

port to output mode, that is, set each LED light port to OUTPUT

mode. The programming method is as follows:

4

5

6

pinMode(Red_LED, OUTPUT); //Set No.9 port to output mode

pinMode(Green_LED, OUTPUT); // Set A1 port to output mode

pinMode(Blue_LED, OUTPUT); //Set A3 port to output mode

29

3) Set the initial state of the LED light. There are two types of level

modes: HIGH and LOW. When the LED light uses the high mode, it

is on; when it uses the low mode, it is off. We set the initial state of

the LED light to low mode, the programming method is as follows:

7

8

9

10

digitalWrite(Red_LED,LOW); // Set No.9 port to low

digitalWrite(Green_LED,LOW); // Set A1 port to low

digitalWrite(Blue_LED,LOW); // Set 31 port to low

}

Step 3: Control the red LED to be on/off. In the loop function, program the

red LED to turn it on, wait 500ms (0.5s), and then turn off it. The

programming method is as follows:

14

15

16

17

18

void loop()

{

digitalWrite(Red_LED,HIGH); //Turn on the red LED

delay(500); // Delay 0.5 seconds

digitalWrite(Red_LED,LOW); //Turn off the red LED light

Step 4: Turn on/off the green LED light and blue LED light.

Step 5: According to the analysis of the above steps, integrate the

program of the LED running light. The programming method is as follows:

1

2

3

4

voidsetup()

{

 Serial.begin (115200); // Set serial baud rate

digitalWrite(Red_LED,LOW); // Set No.9 port to low

(1) What is the difference between input and output modes?

(2) What are common input and output devices?

(3) Can you change the value of Red_LE to 9 in the programming,

Green_LED to A1, and Blue_LED to A3? why?

In the loop function, program the green and blue LED lights to turn

them on/off.

30

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

digitalWrite(Green_LED,LOW); // Set A1 port to low

digitalWrite(Blue_LED,LOW); // Set 31 port to low

}

void loop()

{

digitalWrite(Red_LED,HIGH); //Turn on the red LED

delay(500); // Delay 0.5 seconds

digitalWrite(Red_LED,LOW); //Turn off the red LED light

digitalWrite(Green_LED,HIGH); //Turn on the green LED

 delay(500); //Delay 0.5 seconds

digitalWrite(Green_LED,LOW); //Turn off the green LED light

digitalWrite(Blue_LED,HIGH); //Turn on the blue LED

 delay(500); //Delay 0.5 seconds

digitalWrite(Blue_LED,LOW); //Turn off the blue LED light

}

Step 9: Compile the program and upload it to Arduino main control board.

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve used the control instructions for the LED lights

I’ve controlled the red, green and blue LED lights to turn on

and off through programming

(1) Describe what you think of the setup function and the loop

function: ___

(2) Design a sequence of LED running lights yourself, and use

Arduino programming: __________________________________

31

Assessment Content
Completion

Status

I’ve programmed LED running lights

Common light shows, decorative lights, etc. can not only change to different

colors, but also gradually change from light to dark, just as they can "breathe".

"Breathing" is a physical activity necessary for us, and we know it very well.

Then, how do we make a “breathing” light? Next, let's try doing it.

1. Analysis

Try analyzing the sequence in which the LED breathing lights become

brighter and darker.

2. Steps

(1) Prepare Hardware

Step 1: Connect the LED breathing light, as shown in Figure 2.4.

Task 2: Make the Breathing Light

(1) Mode 1

When making an LED breathing light, first enable the LED light to

change from dark to bright. When its brightness reaches ,

(Fill in: the brightest and darkest), let it .

(2) Mode 2

32

Figure 2.4 Device connection diagram

Step 2: Prepare the experiment equipment and connect it, as shown in

Figure 2.5.

Figure 2.5 Physical connection diagram

33

(2) Design Program

Step 1: Analyze the method for making the breathing light, and draw a

flow chart, as shown in Figure 2.6.

Start

If the LED light can be

brighter?

Increase the LED s

brightness

incrementally

If the LED light can be

dimmer?

Decrease the LED s

brightness

incrementally

True

False

False

True

Figure 2.6 Flow chart of making breathing lights

Step 2: Use the "for" loop statement because the breathing light is to

gradually change from bright to dark and vice versa.

In the loop function, set variables, judgment conditions, and

variable transformation formulas for the "for" loop statement.

The general form of the "for" statement is:

for (Expression 1; Expression 2; Expression 3)

Statement;

Example: "for" statement pseudocode.

for(i=1; i<4; i++)

{

 Move to the first point;

 Move to the second point;

}

34

Define an integer variable i, and set its initial value to 0 (that is, i = 0); the

judgment condition of the loop statement is: i <= 255;

When the judgment condition is satisfied, the variable i increases by 1

from the original value (that is, i = i + 1); when the judgment condition is

not satisfied, skip directly to the next loop statement. The programming

method is as follows:

1

2

3

4

5

6

7

8

voidsetup()

{

// The setup part is not processed

}

void loop()

{

for (int i = 0; i <= 255; i + = 1) {// From dark to bright, increment by 1 each time

Step 3: Write the analog value of the LED. When i gradually increases, so

does the brightness of the LED light. Read the change of the variable i

through the analogWrite () function. In that case, the brightness of the

LED light changes, too. The programming method is as follows:

9

10

11

analogWrite(LED, i); // Write the analog value of LED

delay(300); //Wait 300ms to observe the gradient effect

}

Step 4: Skip to the next for loop statement when the judgment condition i

<= 255 is not satisfied.

1) Define the integer variable i, and set its initial value to 255 (that is, i

= 255);

2) The judgment condition of the loop statement is: i> = 0; when the

judgment condition is satisfied, the variable i decreases by 1 from

the original value (that is, i = i-1); when the judgment condition is not

satisfied, the variable i returns to the first “for” loop statement again.

The programming method is as follows:

The analogWrite() function is the analog value (pulse signal) of the

analog written pin. The syntax is analogWrite(pin,value);

Pin corresponds to the analog output pin, and the value indicates the

duty cycle of the output pulse signal, ranging from 0 to 255.

35

12 for (int i = 255; i> = 0; i-= 1) {// From bright to dark, it gradually decreases by 1

each time

Step 5: Write the analog value of the LED. When i decreases gradually,

the brightness of the LED light will gradually become darker. Read the

change of the variable i through the analogWrite () function. In that case,

the brightness of the LED light changes, too. The programming method is

as follows:

13

14

15

16

analogWrite(LED, i); // Write the analog value of LED

 delay (300); // Wait 300ms to observe the gradual change effect

}

}

Step 7: Compile the program and upload it to the Arduino control board.

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve designed the sequence of making a LED light brighter

and darker

I’ve known the programming method of "for" loop statement

I’ve learned to write the function of the LED analog value

I’ve programmed to make a breathing light

(1) Write the general form of the "for" loop statement: ____________

(2) Within the parentheses of the "for" loop statement, the meaning of

each expression is: ____________________________________

__

(3) Make the breathing light brighten and darken according to the

following sequence: ____________________________________

36

We know that light intensity plays an important role in plant growth and

morphology. Plants have different requirements for light intensity. Next, let's try

detecting light intensity.

1. Analysis

We analyze the key steps to detect light intensity.

2. Steps

(1) Prepare Hardware

Step 1: Connect the equipment to detect the light intensity, as shown in

Figure 2.7.

Figure 2.7 Equipment connection diagram

Step 2: Prepare the experiment equipment, and connect it, as shown in

Figure 2.8.

Task 3: Detect Light Intensity

(1) To detect light intensity, use the equipment: ________________ .

(Fill in the sensor name)

(2) Write the Arduino program, upload it to the Arduino intelligent

control board.

(3) View the light intensity data in .

37

Figure 2.8 Physical connection diagram

(2) Design Program

Step 1: Analyze the method of detecting light intensity, and read the flow

chart, as shown in Figure 2.9.

Start

Initialize the setting

Read the value of

the light sensor

Print the brightness

data

Figure 2.9 Flow chart of detecting light intensity

Step 2: Perform initial setup.

1) Set the serial port baud rate to 115200.

38

2) Set the input and output modes of the LED light port. The

programming method is as follows:

1

2

3

4

Void setup() {

 Serial.begin (115200); // Set serial baud rate

pinMode (Lightsensor, INPUT); // Set the connection port A0 of the light sensor to the input mode

}

Step 3: In the loop function, define the integer variable Light and use it

when reading the value of the light sensor in real time in the surface

program. The programming method is as follows:

5

6

Void loop() {

 int Light; // Define the integer variable Light

Step 4: Read the value of the light sensor. Assign the variable Light to the

current value of the light sensor. The programming method is as follows:

7 Light = analogRead (Lightsensor); // Read the current value of the light sensor

Step 5: Print the light intensity data. The light can read the value returned

by the light sensor in real time, so you just need to print the value of the

variable Light. The programming method is as follows:

8

9

Serial.println(Light); //Print light intensity data

}

In Arduino, try writing a program to set the serial port baud rate.

The analogRead () function indicates the data value read from the

specified analog pin, and the corresponding syntax is: analogRead (pin);

39

Step 6: Compile the program and upload it to the Arduino control board.

Step 7: Open the serial port monitor, and view the light intensity data. In

the upper right corner of Arduino main interface, click the Search symbol,

and then enter the serial monitor interface, as shown in Figure 2.10.

Figure 2.10 Opening the serial monitor

Step 8: View the real-time data of the light intensity. See Figures 2.11 and

2.12 for the sensor data of strong light and no light respectively.

Read and output the analog value of the pin, and send the data

to a computer or a serial port receiving device. The serial port prints the

syntax:

(1) Serial.print(val); (2)Serial.println(val);

 The differences between the two functions above are as follows:

Function Serial.print(val) Serial.println(val);

Serial display

Data results

40

Figure 2.11 Sensor values under strong light

Figure 2.12 Sensor values under zero light intensity value

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

(1) The similarities between the two serial print functions: _________

 __

(2) The similarities between the two serial print functions: _________

 __

41

Assessment Content
Completion

Status

I’ve learned the function of data read from analog pins

I’ve learned the instructions for serial printing

I’ve known how to view light intensity data from a serial monitor

I’ve programmed light intensity detection

We are now able to detect and view light intensity data. Next, let’s try adjusting

the brightness of a light. Under different light intensity conditions, adjust the

light intensity to make plants get more suitable light.

1. Analysis

We analyze the key steps to adjust the light intensity of a light.

2. Steps

(1) Prepare Hardware

Step 1: Connect the equipment to adjust light intensity, as shown in

Figure 2.13.

Task 4: Adjust Light Intensity

42

Figure 2.13 Equipment connection diagram

Step 2: Prepare the experiment equipment and connect it, as shown in

Figure 2.14.

Figure 2.14 Physical connection diagram

(2) Design Program

Step 1: Analyze the method of adjusting light intensity, and read the flow

chart, as shown in Figure 2.15.

43

Start

Initialize the setting

Read the value of

the light sensor

Print the brightness

data

Figure 2.15 Flow chart of adjusting light intensity

Step 2: Define two global variables MaxLight and MinLight to record the

maximum and minimum values of the light sensor output. Generally, set

the maximum light intensity to 1023, and the minimum value to 0. The

programming method is as follows:

1

2

int MaxLight = 1023; //Output value of the light sensor module when it is

fully exposed under strong light

int MinLight = 0; //Output value of the light sensor module when fully

shielded

Step 3: Set the connection port mode.

During the programming, variables fall into global variables and

local variables; global variables can be referenced by all objects or

functions in the program. Local variables can only be referenced by

some objects or functions, and cannot be referenced by other objects

or functions.

The light sensor can automatically detect light intensity in the

environment. The value read by the light sensor varies with the light

intensity of the environment. Generally, the output value is recorded as

1023 and 0 respectively when the light sensor module is completely

exposed under strong light (the actual value is smaller) and shielded

(the actual value is slightly greater).

44

Step 4: In the loop function, define the local variable Light and assign a

value to it, and thus read the current value of the light sensor. The

programming method is as follows:

3

4

5

6

7

8

9

10

voidsetup() {

pinMode(LED, OUTPUT); //Set LED connection port 8 to output mode

pinMode (Lightsensor, INPUT); // Set the connection port A0 of the light sensor to the input mode

}

voidloop() {

int Light;

 Light = analogRead(Lightsensor); //Read the current value of the light sensor

Step 5: Define a local variable i and assign a value to it. The value of i

ranges from 0 to 255. The value read by the light sensor ranges from 0 to

1023, then how does the value correspond to the analog value of the

LED (that is, the value of i)? For this, we use the map () function.

Review: Programming modes for setting the connection port

mode.

Try writing a connection port program. Among them, the

connection port 8 of the LED light is in the output mode, and the

connection port A0 in the input mode.

45

Define the integer variable i, and write the proportional mapping function.

The programming method is as follows:

11

12

13

int i;

 i = map(Light, MinLight, MaxLight, 0, 255); //Map the value of the light sensor

to 0-255

Step 6: Output Brightness.

map () function syntax: map (x, in_min, in_max, out_min,

out_max)

Wherein x: value to be mapped

in_min: minimum interval before being mapped in_max: maximum

interval before being mapped

out_min: minimum interval after being mapped out_max: maximum

interval after being mapped

The mapping relationship between the light intensity value and the

analog value of the LED light is shown in the following figure:

46

The output brightness is programmed as follows:

14

15

16

17

analogWrite(LED,255-i); //Output brightness, where the less light the

light sensor gets, the brighter the LED

delay(100); // Delay100ms

}

Step 7: Compile the program and upload it to the Arduino control board,

and observe the changes in the light intensity and brightness of the LED

light.

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

When the light sensor finds light intensity relatively weak (i.e., the

smaller the variable Light is, the smaller the variable i is), we need to

increase the brightness of the LED light; when the light sensor finds light

intensity strong (i.e., the greater the variable Light is, the greater the

variable i is), we need to decrease the brightness of the LED light. The

relationship between the variable i and the LED brightness is shown in

the following figure:

(1) Understand local and global variables: _____________________

 __

(2) Relationship between ambient light intensity and LED brightness to

be adjusted: __

 __

 __

47

Assessment Content
Completion

Status

I’ve used a light sensor to detect light intensity

I’ve known the mapping relationship between the light intensity

value and the analog value of the LED light

I’ve known the relationship between ambient light intensity and

LED light brightness to be adjusted

I’ve programmed the adjustment of light intensity

48

LESSON

Team name: Team member: Date:

1. Master the difference between integer variables and float variables by the

instruction to define variables.

2. Master the control method of the temperature and humidity sensor by the

relevant instructions of the temperature and humidity sensor.

3. Master the control method of the LCD display by the relevant instructions

of the LCD display.

4. Master the control method of DC Motor by DC Motor related instructions.

5. Master the control method of the RGB module by the instructions of the

RGB module.

6. Understand the multi-branch structure by programming the temperature

control system.

7. Use the temperature and humidity sensor, the fan module, and the RGB

light to simulate and build the temperature control system for a smart

farm.

Overview

Objective

In hot summers, cold winters, humid springs, and dry autumns,

temperature and humidity change too much, which hinders plant growth. In

the smart farm, we have a temperature control system that can accurately

detect the temperature, warm and cool crops, and ensure their better

growth. Let's learn about the smart farm temperature control system.

 Experiment 3

Smart Temperature
Control

49

Equipment Picture Name Quantity

Arduino Mega2560

control board
1

Arduino shield

expansion board
1

Digital temperature

and humidity sensor

(including data

cable)

1

Digital RGB full color

LED module
1

I2C LCD character

LCD blue screen
1

DC motor fan 1

USB square port

cable
1

3-pin DuPont head

adapter
1

Dupont line Several

Equipment

50

 Take care when using electricity.

 Before the experiment, check whether the experiment equipment is

complete and intact. If there is any omission or damage, please report to

the teacher.

 Any specific operations in the experiment shall be performed according to

the experiment manual. If you have any questions, please promptly ask

the teacher.

 During the experiment, the joints will start to work as the robotic arms are

powered on. In that case, do not move the joints of the robotic arms hard

if you do not press the unlock key.

To adjust the temperature and humidity, understand the specific data of

temperature and humidity. You can use the temperature and humidity sensor

to detect the temperature and humidity of the environment, and display the

temperature and humidity data on the serial monitor.

1. Analysis

Request the teacher to demonstrate how to read values of a temperature

and humidity sensor. Observe the data printed on the serial port, analyze

the process of reading the temperature and humidity sensor values, and

fill in the blanks in the table below.

2. Steps

(1) Prepare Hardware

Step 1: Connect the equipment, control board, temperature and humidity

sensor, and PC.

Step 2: Define the sensor .

Step 3: Create a variable, .

Step 4: Read the values of the temperature and humidity sensor.

Step 5: Use the function to display temperature and humidity data on the

serial monitor.

Task 1: Read the Values of the Temperature and
Humidity Sensor

Requirements

51

Step 1: Connect the Arduino control board, DHT11 temperature and

humidity sensor, and PC, as shown in Figure 3.1.

Figure 3.1 Equipment connection diagram

(2) Design Program

Step 1: According to the experiment analysis, read the program flow chart

of displaying temperature and humidity data on the serial port of Arduino

IDE, as shown in Figure 3.2.

The temperature and humidity sensor is a temperature and

humidity composite sensor with a calibrated digital signal output. It

applies special digital module acquisition technology and temperature

and humidity sensing technology to ensure that the product has

extremely high reliability and excellent long-term stability. The sensor

includes a resistive humidity sensing element and an NTC temperature

measuring element, and is connected to a high-performance 8-bit

microcontroller. Therefore, this product has the advantages of

excellent quality, ultra-fast response, strong anti-interference ability,

and high cost performance.

52

Start

Load the DLL

Call the DLL

Define the pin

Initialize the program

Define the variable

Read the value of the

temperature and humidity

sensor

Print the humidity value

on the serial port

Print the temperature value

on the serial port

Delay for two seconds

Figure 3.2 Flow chart

Step 2: Call the library file and define the pins. The program is shown

below.

1

2

3

4

// Call the temperature and humidity sensor library file

#include<dht11.h>

dht11 DHT;

#define DHT11_PIN A11 // Select the interface of the sensor

Step 3: Initialize the program, set the baud rate, print character humidity

and temperature. The program is shown below.

53

5

6

7

8

9

//Initialization

voidsetup()

{

Serial.begin(115200); //Baud rate

 }

Step 4: Define the variables, store the data of the temperature and

humidity sensor data, and read the data. The program is shown below.

10

11

12

13

14

//Loop

voidloop(){

intTem;

Serial.print("DHT11, \t");

Tem = DHT.read(A11); // Read data

Step 5: Display the data. Display the humidity and temperature of the

temperature and humidity sensor, with a delay of 2 seconds. The

program is shown below.

15

16

17

18

19

// Display data

Serial.print(DHT.humidity,1); // Print the read humidity data

Serial.println(DHT.temperature,1); // Print the read temperature data

delay(2000);

}

Step 6: Integrate the program, as shown below.

1

2

3

4

5

6

7

8

9

10

11

// Call the temperature and humidity sensor library file

#include<dht11.h>

dht11 DHT;

#define DHT11_PIN A11 // Select the interface of the sensor

//Initialization

voidsetup()

{

Serial.begin(115200); //Baud rate

}

int is an integer variable, and float is a floating-point variable. Why

do we define an integer variable here?

54

12

13

14

15

16

17

18

19

20

21

22

//Loop

voidloop(){

 int Tem; // Create a variable

Serial.print("DHT11, \t");

Tem = DHT.read(A11); // Read data

// Display data

Serial.print(DHT.humidity,1); // Print the read humidity data

Serial.println(DHT.temperature,1); // Print the read temperature data

delay(2000);

}

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve created an integer variable

I’ve used the instruction to read the values of the

temperature and humidity sensor

I’ve programmed to read the values of the temperature and

humidity sensor

(1) The instructions to define the variables are: _________________

(2) The instructions to read the temperature and humidity sensor

values are: __

(3) The instructions to display humidity data are: ________________

(4) The instructions to display temperature data are: _____________

55

To read the values of the temperature and humidity sensor, view the serial port

monitor of the computer. If it is not easy to do so, you can use the LCD to

display the sensor values, and directly view them after the program runs.

1. Analysis

Ask the teacher to show the values of the temperature and humidity

sensor on the LCD. Observe the results, analyze the steps to read the

parameters of the temperature and humidity sensor from the LCD, and

complete the steps in the blanks in the table below.

2. Steps

(1) Prepare Hardware

Step 1: Connect Arduino control board, DHT11 temperature and humidity

sensor, LCD liquid crystal module, and PC, as shown in Figure 3.3.

The LCD liquid crystal display uses the physical characteristics of

liquid crystal and controls its display area through voltage, i.e., it can

show corresponding characters, such as the number 123, upper and

lower case letters Aa, and the symbol %.

Step 1: Connect the device, motherboard, temperature and humidity

sensor, LCD display, and computer.

Step 2: Define temperature and humidity sensors and LCD display

pins.

Step 3: Create a variable.

Step 4: Read the values of the temperature and humidity sensor.

Step 5: Set the display position of ________, and display the current

environment ________ on the LCD screen.

Task 2: Display the Parameters of the Temperature and
Humidity Sensor through the LCD

56

Figure 3.3 Equipment connection diagram

(2) Program design

Step 1: According to the results of the experiment analysis, read the

program flow chart of showing the temperature and humidity data on the

LCD, as shown in Figure 3.4.

The wiring of the LCD module in the Mage2560 control board is

SCL-21 and SDA-20 respectively.

57

Start

Load the DLL

Call the DLL

Set the LCD

Set up a variable

Initialize

Read the value of the

temperature and humidity

sensor

Make the backlight come

on

Set the display position

The LCD shows humidity

The setting shows

position

The LCD shows

temperature

Delay for 0.5 seconds

Figure 3.4 Flow chart

Step 2: Call the library file. In this experiment project, we need to use the

LCD and the temperature and humidity sensor, call the library file of the

58

display and the temperature and humidity sensor. The program is shown

below.

1

2

3

4

// Call library file

#include<Wire.h>

#include<LiquidCrystal_I2C.h>

#include<dht11.h>

Step 3: Set the LCD to 2 lines and 16 characters, set the functions of the

temperature and humidity sensor, and create a variable program as

follows.

6

7

8

LiquidCrystal_I2C lcd (0x20,16,2); // Set the LCD to 2 lines with 16 characters each

line

 dht11 DHT;

intchk;

Step 4: Perform initialization. Set the pins and baud rate of the

temperature and humidity sensor pins, and initialize the LCD. The

program is shown below.

10

11

12

13

14

15

void setup()

{

 #define DHT11_PIN A11

Serial.begin(115200); // Set baud rate

lcd.init(); // Initializelcd

 }

The LCD module is displayed in the form of a dot matrix, and the

content of each byte corresponds to the light and dark of the

corresponding position on the display. For example, 2 lines with 16

characters per line are shown in the figure below.

59

Step 5: Read the data of the temperature and humidity sensor and turn

on the LCD backlight. The program is shown below.

20

21

Tem = DHT.read (A11); // Read temperature and humidity sensor data

lcd.backlight (); // Turn on the LCD backlight

Step 6: Show the read data of the temperature and humidity sensor. The

humidity appears on the first line of the LCD and the temperature on the

second line. The program is shown below.

22

23

24

25

26

27

28

29

30

31

// Display humidity

lcd.setCursor (0,0); // Show the cursor position

lcd.print("H:");

lcd.print(DHT.humidity);

 // Display temperature

lcd.setCursor (0,1); // Show cursor position

lcd.print("T:");

lcd.print(DHT.temperature);

lcd.print("C");

Step 7: Integrate the program. The program is shown below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

// Call the library file

#include<Wire.h>

#include<LiquidCrystal_I2C.h>

#include<dht11.h>

LiquidCrystal_I2C lcd (0x20,16,2); // Set the LCD to 2 lines with 16 characters each

line

dht11 DHT;

intTem;

void setup()

{

 #define DHT11_PIN A11

Serial.begin(115200); // Set baud rate

lcd.init (); // Initialize lcd

Do not turn on the LCD backlight, but observe the results displayed

by the LCD.

60

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 }

Void loop()

{

Tem = DHT.read (A11); // read temperature and humidity sensor data

lcd.backlight (); // Turn on the LCD backlight

// Display humidity

lcd.setCursor (0,0); // Show cursor position

lcd.print("H:");

lcd.print(DHT.humidity);

 // Display temperature

lcd.setCursor (0,1); // Show cursor position

lcd.print("T:");

lcd.print(DHT.temperature);

lcd.print("C");

delay(500);

}

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve known how the LCD works

I’ve set the cursor position of the LCD

I’ve used the instructions to display characters on the LCD

(1) Briefly describe the display principle of the LCD: ______________

(2) The instructions to set the cursor position of the LCD are: ______

(3) The instructions to display characters on the LCD are: _________

61

I’ve programmed to display the temperature and humidity

sensor parameters on the LCD

As surveys show, the suitable growth temperature is about 20°C for radishes,

20-25°C for germination, 18-22°C for leaves, and 18-22°C for stems. If the

temperature is too high, plants grow slowly and are prone to diseases and

insect pests, the worst of which are aphids and viruses; if the temperature is

too low, plants grow slowly. During leaf growth, we should uncover the film to

ventilate and reduce humidity, enhance ventilation and increase air flow.

1. Analysis

During leaf growth, when the temperature of the temperature and

humidity sensor exceeds 23°C on the LCD, start the small fan module to

accelerate the air velocity in the greenhouse to reduce the temperature

and humidity. Analyze the steps to run the cooling system. Then,

complete the steps in the blanks in the table below.

Step 1: Connect the device, control board, temperature and humidity

sensor, LCD display, fan module, and PC.

Step 2: Temperature and humidity sensor, LCD display, and fan module

pins.

Step 3: Create a variable, .

Step 4: Read the values of the temperature and humidity sensor.

Step 5: Set the display position of , and show the

current environment on the LCD display.

Step 6: Determine whether the temperature exceeds 23°C.

Step 7: When the temperature exceeds 23°C, , ventilate;

when the temperature is below 23°C, you do not need to

ventilate .

Task 3: Design the Cooling System

62

2. Steps

(1) Prepare Hardware

Step 1: Connect Arduino control board, DHT11 temperature and humidity

sensor, LCD liquid crystal module, DC Motor, PC, as shown in Figure 3.5.

Figure 3.5 Equipment connection diagram

According to surveys, during the growth and development of

crops, their required temperature and moisture range varies with their

types and varieties. The most suitable temperature for radish seed

germination is 20-25°C, and the initial germination temperature is

2-3°C. Radish seedlings can withstand the temperature of up to

25°C, and the temperature from -2 to -3°C for a short time. The

optimum growth temperature is 18-22°C for leaves, and 15-18°C for

endoplasmic roots. At a temperature of over 25°C, this plant grows

weak with poor quality. Therefore, its suitable growth temperature is

high in the early period and low in the later period, but this order is

reverse for radish planting in high mountains. The use of mulch can

prevent radish planting from being affected by temperature. Korean

cold-resistant varieties have a wide range of adaptability. As long as

the temperature at the early stage is not lower than 10°C, their

growth and quality are not affected. Therefore, in this experiment we

set 23°C as the critical point of high temperature.

63

(2) Design Program

Step 1: According to the experiment analysis, read the flow chart of the

cooling system, as shown in Figure 3.6.

Start

Call the DLL

Initialize

Read the value of the

temperature and

humidity sensor

Make the LCD show

the temperature and

humidity

Temperature t>23?

DC Motor

Accelerates

DC Motor

Decelerates

Set the motor speed

255
Set the motor speed 0

Adjust the speed of

PWM

Delay for 50

milliseconds

Motor speed>=255? Motor speed<=0?

True

True True

False

FalseFalse

Figure 3.6 Flow chart of the cooling system

Step 2: Provide no library file the DC motor. For this, see Task 2.

Step 3: Perform initialization. Initialize the LCD, set the display address,

motor pins, and temperature and humidity sensor pins, create variables

64

of motor speed and temperature, and set the baud rate. The program is

shown below.

6

7

8

9

10

11

12

13

14

15

16

17

18

dht11 DHT;

LiquidCrystal_I2C lcd (0x20,16,2); // Set the LCD to 2 lines and 16 characters

int motorSpeed; //Motor speed variable

int motorPin = 11; //Motor drive pin 11

#define DHT11_PIN A11 // Set the DHT pin to A11

intchk;

int t; //temperature variable

voidsetup()

{

Serial.begin (115200); // Set the baud rate

lcd.init (); // Initialize lcd

 }

Step 4: Repeatedly read the data of the temperature and humidity sensor

and the humidity and temperature on the LCD. The program is shown in

task 2.

Step 5: Use the variable t to store temperature data to determine whether

the temperature exceeds 23°C. The program is shown below.

36

37

38

 t=DHT.temperature;

if(t >23)

{

Step 6: At a temperature of over 23℃, the DC motor accelerates, and

starts the fan, which keeps rotating at the maximum speed of 255, thus

cooling the system. The program is shown below.

39

40

41

42

motorSpeed+=5;

if(motorSpeed>=255)

motorSpeed=255;

}

Step 7: At a temperature of lower than 23°C, the DC motor decelerates to

a speed of 0. The program is shown below.

43

44

45

46

47

48

 else

 {

motorSpeed-=5;

if(motorSpeed<=0)

motorSpeed=0;

 }

65

Step 8: Adjust the motor speed through PWM, with a delay of 500

milliseconds. The program is shown below.

49

50

analogWrite(motorPin, motorSpeed); //PWM speed regulation

delay(50);

Step 9: Integrate the program. The cooling system program is shown

below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

// Call library file

#include<Wire.h>

#include<LiquidCrystal_I2C.h>

#include<dht11.h>

dht11 DHT;

LiquidCrystal_I2C lcd (0x20,16,2); //Set the LCD to display in 2 lines and 16

characters

int motorSpeed; // Variable for the motor speed

int motorPin = 11; // Motor drive pin 11

#define DHT11_PIN A11 // Set the DHT pin to A11

intchk;

int t; // Variable for temperature

voidsetup()

{

Serial.begin (115200); // Set the baud rate

lcd.init (); // Initialize lcd

 }

voidloop()

{

chk = DHT.read(DHT11_PIN); // Read temperature and humidity sensor data

lcd.backlight (); // Turn on the LCD backlight

// Display humidity

lcd.setCursor (0,0); // Show cursor position

lcd.print("H:");

lcd.print(DHT.humidity,1);

lcd.print("%");

 // Display temperature

lcd.setCursor (0,1); // Show cursor position

lcd.print("T:");

 lcd.print(DHT.temperature,1);

66

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

 lcd.print("C");

t=DHT.temperature;

if(t >23)

{

motorSpeed+=5;

if(motorSpeed>=255)

motorSpeed=255;

 }

else

 {

motorSpeed-=5;

if(motorSpeed<=0)

motorSpeed=0;

 }

analogWrite(motorPin, motorSpeed); //PWM speed regulation

delay(50);

}

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve used the instructions to set the acceleration of the

motor

I’ve used the instructions to set the deceleration of the

motor

I’ve known the instructions to adjust the motor speed

through PWM

(1) The instructions to set the acceleration and deceleration of the

motor are: ___

 __

(2) The instructions to adjust the motor speed through PWM are: ___

 __

67

Assessment Content
Completion

Status

I’ve designed the cooling program design

To make the seedlings grow faster, the cultivation farm usually uses a

sunshine lamp to heat the seedling growth environment to ensure the yield of

seedlings. The power of the sunlight lamp is too large to suit the use in the

classroom. In this experiment, we will use RGB colored lights instead of the

sunlight lamp to simulate the temperature rise.

1. Analysis

When the temperature of the temperature and humidity sensor on the

LCD is lower than 10°C, start the RGB colored lights to simulate the

heating of the sunlight. Analyze the implementation steps of the heating

system. Complete the steps are in the blanks in the table below.

Step 1: Connect the device, control board, temperature and humidity

sensor, LCD display, RGB lights, and PC.

Step 2: Connect the temperature and humidity sensor, LCD and RGB

colored light pins.

Step 3: Create a variable, .

Step 4: Read the values of the temperature and humidity sensor.

Step 5: Set the display position of , and display the

current environment on the LCD.

Step 6: Determine whether the temperature is below 10°C.

Step 7: When the temperature is lower than 10°C, ;

when the temperature exceeds 10°C, .

Step 8: Set the RGB color function.

Task 4: Design the Heating System

68

2. Steps

(1) Prepare Hardware

Step 1: Connect Arduino control board, DHT11 temperature and humidity

sensor, LCD module, RGB module, PC, as shown in Figure 3.7.

Figure 3.7 Equipment connection diagram

(2) Design Program

Step 1: According to the experiment analysis, read the flow chart of the

heating system, as shown in Figure 3.8.

The full-color RGB module offers R, G, and B three-color output,

and achieve the full-color effect by mixing the three colors: R, G, and B.

Multiple RGB modules can be connected in series to achieve marvelous

lights, blinking, rainbow transformation, and even cool effects such as

text, letters, pictures and animations.

69

Start

Load and call the

DLL

Initialize

Read the value of the

temperature and

humidity sensor

Make the LCD show

the temperature and

humidity

temperature <10

Turn on the LED Turn off the LED

Delay for 50

milliseconds

Define the color

function

End

True False

Figure 3.8 Flow chart of the heating system

Step 2: Call the library file. In this experiment project, we need to use the

LCD, the temperature and humidity sensor, and the RGB module, and

call their library files. The program is shown below.

1

2

3

4

5

// Call the library file

#include<Wire.h>

#include<LiquidCrystal_I2C.h>

#include<dht11.h>

#include <Adafruit_NeoPixel.h>

70

Step 3: Initialize the LCD and DHT temperature and humidity sensor in

the same way as in Task 2. In this experiment, we need to initialize the

RGB module. The program is shown below.

12

13

14

15

16

// Define the number of RGB pins and lights

#define PIN_LED 9

#define NUM_LED 1

// Define objects of RGB module

Adafruit_NeoPixelRGB_Strip = Adafruit_NeoPixel(NUM_LED, PIN_LED,

NEO_GRB + NEO_KHZ800);

Step 4: Repeatedly read the values of the temperature and humidity

sensor and the humidity and temperature on the LCD. The program is

shown in Task 2.

Step 5: Determine whether the temperature is lower than 10°C. If the

temperature is lower than 10°C, start the RGB module to heat up;

otherwise, turn off the RGB module. The program is shown below.

50

51

52

53

54

55

56

57

58

59

60

61

if(t < 10)

 {

 //Turn on the lights

colorWipe(RGB_Strip.Color(255, 255, 255), 1000);

RGB_Strip.setBrightness(128);

 }

else

 {

 //Turn off the lights

colorWipe(RGB_Strip.Color(255, 255, 255), 1000);

RGB_Strip.setBrightness(0);

 }

Step 6: Define the color function colorWipe(RGB_Strip.Color (R, G, B),

time). The program is shown below.

64

65

66

67

68

69

70

71

 // Define the color function

Void colorWipe(int c, int wait) {

 for (uint16_t i = 0; i<RGB_Strip.numPixels(); i++) {

RGB_Strip.setPixelColor(i, c);

RGB_Strip.show();

 delay(wait);

 }

}

Step 7: Integrate the program. The heating system program is shown

below.

71

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

// Call library file

#include<Wire.h>

#include<LiquidCrystal_I2C.h>

#include<dht11.h>

#include <Adafruit_NeoPixel.h>

dht11 DHT;

LiquidCrystal_I2Clcd(0x20,16,2); // Set the LCD to 2 lines and 16 characters

int Tem;

int t; // Variable for temperature

// Define the number of RGB pins and lights

#define PIN_LED 9

#define NUM_LED 1

// Define the object of RGB module

Adafruit_NeoPixelRGB_Strip = Adafruit_NeoPixel(NUM_LED, PIN_LED,

NEO_GRB + NEO_KHZ800);

Void setup()

{

#define DHT11_PIN A11 // Define the pins of the temperature and humidity sensor

Serial.begin (115200); // Set the baud rate

lcd.init(); // Initialize lcd

RGB_Strip.begin();

RGB_Strip.show();

 }

Void setup()

{

Serial.begin(115200); // Set baud rate

lcd.init(); // Initialize lcd

 }

Void loop()

{

Tem = DHT.read (A11); // Read temperature and humidity sensor data

lcd.backlight (); // Turn on the LCD backlight

// Display humidity

lcd.setCursor (0,0); // Show cursor position

lcd.print("H:");

lcd.print(DHT.humidity);

72

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

 // Display temperature

lcd.setCursor (0,1); // Show cursor position

lcd.print("T:");

lcd.print(DHT.temperature);

lcd.print("C");

t=DHT.temperature;

if(t < 10)

{

// Turn on the lights

colorWipe(RGB_Strip.Color(255, 255, 255), 1000);

RGB_Strip.setBrightness(128);

 }

else

 {

 // Turn off the lights

colorWipe(RGB_Strip.Color(255, 255, 255), 1000);

RGB_Strip.setBrightness(0);

 }

delay(50);

}

// define the color function

voidcolorWipe(int c, int wait) {

 for (uint16_t i = 0; i<RGB_Strip.numPixels(); i++) {

RGB_Strip.setPixelColor(i, c);

RGB_Strip.show();

 delay(wait);

 }

}

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

(1) The instructions to turn the lights on and off are: ______________

 __

(2) The way to define a function is: ___________________________

 __

73

Assessment Content
Completion

Status

I’ve used the RGB light

I’ve used the instruction to turn on the light

I’ve used the instruction to turn off the light

I’ve defined the function to set the color of the RGB light

I’ve programmed the heating system

According to the requirements of different time and temperature of radish

growth, people have designed a temperature control system to automatically

adjust the temperature in the greenhouse. For example, during seedling

cultivation, there must have a high temperature (make sure the temperature is

higher than 10°C); during leaf growth, there must have an optimal growth

temperature (18-22°C), which may not exceed 23°C.

1. Analysis

When the temperature of the temperature and humidity sensor on the

LCD is lower than 10°C, perform the operation to raise temperature

(using a RGB colored light instead of a sunlight for simulation); when

such a temperature is over 23°C, the fan module starts to cool down and

ventilate; when such a temperature is between 10°C and 26°C, neither

the fan nor the RGB light starts. Analyze the implementation steps of the

temperature control system.

Task 5: Design the Temperature Control

System

74

2. Steps

(1) Prepare Hardware

Step 1: Connect Arduino control board, DHT11 temperature and humidity

sensor, the LCD module, the RGB module, the DC Motor, and the PC, as

shown in Figure 3.9.

Step 1: Connect the equipment, such as the control board, the

temperature and humidity sensor, the LCD, the RGB light, the fan

module, and the PC.

Step 2: Connect the pins of the temperature and humidity sensor, the

LCD, and the RGB colored light.

Step 3: Create a variable, .

Step 4: Read the values of the temperature and humidity sensor.

Step 5: Set the display position of , and display the

current environment on the LCD.

Step 6: Determine whether the temperature is below 10°C.

Step 7: When the temperature is lower than10°C, ;

Step 8: Set the function of the RGB colored light.

Step 9: Determine whether the temperature exceeds 23°C.

Step 10: When the temperature exceeds 23 °C, ,

and blow air for ventilation;

Step 11: Determine whether the temperature is between 10°C and

23°C. If so, you do not need to provide ventilation, ; do

not need to raise temperature, .

75

Figure 3.9 Equipment connection diagram

(2) Design Program

Step 1: According to the experiment analysis, read the flow chart of the

temperature control system, as shown in Figure 3.10.

Start

Call the DLL

Initialize

Read the value of the

temperature and

humidity sensor

Make the LCD show

the temperature and

humidity

Temperature<10?

temperaturet>=10&&t<

=23?

temperaturett>23?

Turn on the LED

Turn off the LED

DC Motor

Accelerates

DC Motor

Decelerates
Motor speed<=0

Motor speed>=255
Set the motor speed

255

Set the motor speed 0

Adjust the speed of

PWM

Delay for 50

milliseconds

Define the color

function

End

True

True

True

True

True

False

FalseFalse

False

False

Figure 3.10 Flow chart of the temperature control system

76

Step 2: Call the library file. Since DC Motor does not have a library file,

the library file called in this experiment is the same as task 4.

Step 3: Initialize the equipment. Initialize the LCD and DHT temperature

and humidity sensors as you do in Task 2, the DC Motor as you do in

Task 3, and the RGB module as you do in Task 4.

Step 4: Repeatedly read the values of the temperature and humidity

sensor and the humidity and temperature on the LCD. The program is

shown in task 2.

Step 5: Determine whether the temperature is lower than 10°C. If yes,

start the RGB module to heat up; the program is shown in task 4.

Step 6: Determine whether the temperature is within 10-23°C. If yes, turn

off the RGB module and let the DC Motor slow down. The program is

shown below.

52

53

54

55

56

57

58

59

60

61

else if(t=>10&&t<=23)

 {

// Turn off the lights

colorWipe(RGB_Strip.Color(255, 255, 255), 1000);

RGB_Strip.setBrightness(0);

// Turn off the fan

motorSpeed-=20;

if(motorSpeed<=0)

motorSpeed=0;

 }

Step 7: Determine whether the temperature exceeds 26°C. If yes, start

the fan module. The program is shown in task 3.

Step 8: Adjust the motor speed through PWM, with 500 ms delay. The

program is shown in Task 3.

Step 9: Define the color function colorWipe (RGB_Strip.Color (R, G, B),

time). The program is shown in Task 4.

Step 10: Integrate the program. The temperature control system program

is as follows.

1

2

// Call the library file

#include<Wire.h>

Try programming the initialization for this experiment.

77

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

#include<LiquidCrystal_I2C.h>

#include<dht11.h>

#include <Adafruit_NeoPixel.h>

dht11 DHT;

LiquidCrystal_I2C lcd (0x20,16,2); // Set the LCD to 2 lines and 16 characters

int motorSpeed; // Variable for motor speed

int motorPin = 11; // Motor drive pin 11

#define DHT11_PIN A11 // Set the DHT pin to A11

int Tem;

int t; // Variable for temperature

// Define the number of RGB pins and lights

#define PIN_LED 9

#define NUM_LED 1

// Define the objects of RGB module

Adafruit_NeoPixelRGB_Strip = Adafruit_NeoPixel(NUM_LED, PIN_LED,

NEO_GRB + NEO_KHZ800);

Void setup()

{

#define DHT11_PIN A11 // Define the pins of the temperature and humidity sensor

Serial.begin (115200); // Set the baud rate

lcd.init (); // Initialize the LCD

RGB_Strip.begin();

RGB_Strip.show();

 }

Void setup()

{

Serial.begin (115200); // Set the baud rate

lcd.init (); // Initialize LCD

 }

Void loop()

{

Tem = DHT.read (A11); // Read the data of the temperature and humidity sensor

lcd.backlight (); // Turn on the LCD backlight

// Display humidity

lcd.setCursor (0,0); // Show cursor position

lcd.print("H:");

lcd.print(DHT.humidity);

78

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

 // Display temperature

lcd.setCursor (0,1); // Show cursor position

lcd.print("T:");

lcd.print(DHT.temperature);

lcd.print("C");

t=DHT.temperature;

if(t < 10)

{

// Turn on the lights

colorWipe(RGB_Strip.Color(255, 255, 255), 1000);

RGB_Strip.setBrightness(128);

 }

else if(t=>10&&t<=23)

 {

 // Turn off the lights

colorWipe(RGB_Strip.Color(255, 255, 255), 1000);

RGB_Strip.setBrightness(0);

// Turn off the fan

motorSpeed-=5;

if(motorSpeed<=0)

motorSpeed=0;

 }

else if(t >23)

{

// start the fan

motorSpeed+=5;

 if(motorSpeed>=255)

motorSpeed=255;

 }

analogWrite(motorPin, motorSpeed); //PWM speed regulation

delay(50);

}

// define the color function

Void colorWipe(int c, int wait) {

 for (uint16_t i = 0; i<RGB_Strip.numPixels(); i++) {

RGB_Strip.setPixelColor(i, c);

RGB_Strip.show();

 delay(wait);

 }

}

79

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve known how to express the double judgment statement

I’ve used the multi-branch structure

I’ve designed the programming for a temperature control

system

(1) The expression of double judgment is: ______________________

 __

(2) The characteristics of the multi-branch statement are: __________

 __

80

LESSON

 By making the intelligent watering system, master how to apply the soil

humidity sensor.

 By designing the new end of the robotic arm, master how to apply the 3D

model.

 By making the intelligent watering system, learn how to use the LCD1602

display.

 By making the intelligent watering system, learn how to control the pump

 By making the intelligent watering system, learn how to control the relay.

Objective

Crops cannot grow without sunlight, air and water. Irrigation is to water

farmland. Too much or little moisture in soil is not good for crop growth.

Therefore, it is important to monitor soil moisture and water crops in time,

because these measures ensure their growth and harvest. In this

experiment, we simulate a scenario of automatic watering in an intelligent

farm. Through a sensor, the system automatically learns about soil

moisture. As soil moisture is lower than the related index, the system can

control the robot to automatically water farmland.

Overview

 Experiment 4

Watering

81

Equipment Picture Name Quantity

Dobot Magician Lite

robotic arm
1

Type-C cable 1

Power adapter 1

Arduino Mage 2560

control board
1

Arduino shield expansion

board
1

Soil humidity sensor 1

Pump with a water pipe 1

LCD1602 display 1

Equipment

82

Equipment Picture Name Quantity

Digital relay 1

Battery box for four AA

size batteries
1

AA size battery 4

Water pipe clamp 1

 Take care when using electricity.

 Before the experiment, check whether the experiment equipment is

complete and intact. If there is any omission or damage, please report to

the teacher.

 Any specific operations in the experiment shall be performed according to

the experiment manual. If you have any questions, please promptly ask

the teacher.

 During the experiment, the joints of the robotic arms will start to work as

the arms are powered on. In that case, do not move the joints if students

do not press the unlock key.

 Report any device fault during the experiment to your teacher in a timely

manner, and do not handle it yourself.

 Arrange all devices after the experiment. You shall not leave the lab

before check by the group leader.

Requirements

83

When should the intelligent watering system work? To answer this question,

we need to measure the moisture content in soil. As moisture content is lower

than the set target value, the robot will automatically water soil. In this

experiment, we will test soil moisture content with a soil humidity sensor.

1. Analysis

Get the soil moisture value from a soil humidity sensor, and analyze the

completed steps.

2. Steps

(1) Prepare Hardware

Step 1: According to the hardware connection diagram, connect the

circuit, as shown in Figure 4.1.

Figure 4.1 Wiring diagram of the soil humidity sensor

(2) Design Program

Step 1: Read the flow chart about how to get the soil humidity value, as

shown in Figure 4.2.

Arduino mage2560 is equipped with the digital I\O port and the simulation

I\O port. The soil humidity sensor needs to be connected to port of Arduino

mage2560.

Task 1: Obtain the Soil Humidity

Value

84

Start

Read the value of the

soil sensor

Transform the value

as percentage

Output a percentage

value

Figure 4.2 Reading the soil humidity flow chart

Step 2: Enable Arduino programming software. Define the pin name.

1 #define HumidityPin A11 //Define the pin of the soil humidity sensor

Step 3: Define the variable HumidityValue to store the soil humidity

values tested by the soil humidity sensor.

2 intHumidityValue; //Store the soil humidity values, with a range from 0 to 1023

Step 4: Define the variable HumidityPercent to store the soil humidity

percent values.

3 intHumidityPercent; //Store the soil humidity values, with a range from 0 to 100

Step 5: Set the baud rate.

4

5

6

7

Void setup()

{

Serial.begin(115200); //Set the baud rate

}

Step 6: Read the value from the sensor.

8

9

10

Void loop()

{

HumidityValue = analogRead(HumidityPin); //Read the value from the sensor

Step 7: Convert the value from the sensor into a percent, because

moisture is indicated by a percent.

85

11

12

13

14

15

HumidityPercent = map(300, 1023, 0, 100, HumidityValue);

//Set the humidity value of dry soil to 300

if(HumidityPercent>100)

{

HumidityPercent = 100;

}

Step 8: Print and output the soil humidity percent.

16

17

18

19

Serial.print(“Humidity:”);

Serial.print(HumidityPercent);

Serial.println(“%”);

}

Step 9: Compile and upload the program.

Step 10: Insert a soil humidity sensor into soil with different humidity, and

switch on the serial interface monitor to observe whether the tested value

changes.

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve learned how to use the soil humidity sensor

I’ve learned how to test the soil moisture content value

(1) The method of getting the soil humidity value: ___________________

 __

 __

 __

(2) How we output the soil value in the percent form? ________________

 __

 __

86

From the above experiment task we have learned how to get the soil moisture

content, and how to show characters through LCD1602 display. Today, we will

learn to show the tested soil moisture values on LCD1602 display.

1. Observation

Observe how the teacher conducts the experiment. Then, complete the

steps to show the soil humidity values on LCD1602.

2. Steps

(1) Prepare Hardware

Step 1: According to the hardware connection diagram, connect the

circuit, as shown in Figure 4.3.

Figure 4.3 Connection diagram of the soil humidity sensor and LCD1602

Step 1: Obtain the soil humidity value.

Step 2:

Task 2: Display the Soil Humidity on LCD1602

87

(2) Design Program

Step 1: Draw the program flow chart in which LCD1602 shows soil

humidity, as shown in Figure 4.4.

Start

Obtain the value of the

soil moisture

Make LCD1602 show

the moisture value

Figure 4.4 Flow chart of showing soil humidity

Step 2: Enable Arduino software, and import the library files of I2C

communication of LCD1602 display.

1

2

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

Step 3: Set the display parameter of LCD1602.

3 LiquidCrystal_I2C lcd(0x20,16,2);

Step 4: Define the value variable and percent variable of soil humidity.

4 intHumidityValue;

5 intHumidityPercent;

Step 5: Initialize LCD1602 in setup() function.

6

7

8

9

Void setup()

{

lcd.init(); //Initialize LCD

lcd.backlight();

10 }

Step 6: Read the value from the soil humidity sensor, and convert it into a

percent. According to Task 1, independently complete this step.

11

12

13

Void loop()

{

88

14

15

16

Step 7: Allow LCD1602 display to show the percent value.

17

18

19

20

lcd.home();

lcd.print("Humidity:");

lcd.print(HumidityPercent);

lcd.print("%");

21

22

delay(50);

}

Step 8: Compile and upload the program.

Step 9: Place a soil humidity sensor in soil with different humidity, and

observe the change in the value on LCD1602 display.

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve learned how to comprehensively apply the soil

humidity sensor and LCD1602 display

I’ve drawn the program flow chart of how LCD1602 shows

the soil humidity value

I’ve programmed to allow LCD1602 to show the soil

humidity value

The steps to show the soil humidity value on LCD1602 in the percent form

are: __

89

An important step for the automatic watering system is how it control the water

amount. Too much water corrupts the roots of plants, while too little water is not

enough for normal growth of plants. To better control the water amount, we use

the pump to draw water in this task, ensuring that water amount is intelligently

controlled.

1. Observation

Observe how the teacher draws water with a pump. Then, record the key

steps of this process, and fill in the form.

2. Steps

(1) Prepare Hardware

Step 1: According to the hardware connection diagram, connect the

circuit, as shown in Figure 4.5.

Figure 4.5 Pump wiring diagram

(2) Design Program

Step 1: Read the flow chart of pump control program, as shown in Figure

4.6.

In the hardware circuit connection, connect the control port of the relay to

Arduino port 9, the COM port of the relay to the anode of the battery box,

the anode of the pump to , and the cathode of the pump to .

Task 3: Control the Pump to Draw Water

90

Start

Port 9 outputs high

electrical level

Draw water from the

water pump

Stop drawing

watering in 2 seconds

End

Figure 4.6 Pump control flow chart

Step 2: Enable Arduino programming software, and define the control

port of the relay.

1 int Relay = 9;

Step 3: Set the control port of the relay to the output mode.

2 voidsetup()

3 {

4 pinMode(Relay,OUTPUT);

5 }

Step 4: Control the pump to draw water. Input high level into the relay,

and ensure the connectivity between the NO port and the COM port, thus

connecting the pump to its power supply.

6 voidloop()

7 {

8 digitalWrite(Relay, HIGH);

Step 5: Shut down the pump, with a delay of 2 seconds.

9 delay(2000);

10 digitalWrite(Relay, LOW);

91

11

12

while(1);

}

Step 8: Compile and upload the program.

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve learned how to use the relay

I’ve learned how to use the pump

I’ve understood the pump circuit diagram

I’ve programmed the pumping control.

To improve pump utilization, we can use the robotic arm to control the water

pipe in watering plants from different places. But the current end of the robotic

arm fails to fix the water pipe, so we need to design a new end to do so.

1. Observation

Observe how the teacher designs the end of the robotic arm. Then,

record the key steps of this process, and fill in the blanks below.

Task 4: Design the End of the Robotic Arm

When the relay is input high level, is connected to the COM port; when the

relay is input low level, is disconnected with the COM port.

92

2. Steps

Step 1: Log on to Tinkercad, and create a new project. Make the external

shape of a steering engine box, and draw out a cuboid with 40 mm in

length, 24 mm in width and 40 mm in height, as shown in Figure 4.7.

Figure 4.7 Setting the length, width and height of the cuboid

Step 2: Measure the size of the interface at the end of the robotic arm,

and add to the steering engine box the section that is connected with the

interface of the robotic arm. Then, drag out another cuboid, with length,

width and height set to 23 mm, 17 mm and 14 mm respectively, as shown

in Figure 4.8.

Figure 4.8 Setting the the length, width and height of the small cuboid

Step 3: Align the two objects forward and backward, move the small one

rightward until it touches the large one, as shown in Figure 4.9.

In designing a water pipe clamp, we need to use the basic geometric

bodies: cuboid, ___

In designing a water pipe clamp, we use these drawing instructions:

alignment, ___

93

Figure 4.9 Aligning and moving the small cuboid

Step 4: Combine the two objects. Select the two objects with the cursor,

and then click the Group icon, as shown in Figure 4.10.

Figure 4.10 Combination

Step 5: Establish a cylinder, which is 50 mm in height, and is 1 mm less

than the real water pipe in diameter. Measure the pipe diameter based on

the real water pipe size. In this experiment, the water pipe has a 5 mm

diameter. We can set the cylinder diameter to 4 mm, because the size 1

mm less than the real size can lock the water pipe, as shown in Figure

4.11.

94

Figure 4.11 Establishing the cylinder

Step 6: Align the cylinder with the end of the designed robotic arm. Click

the cylinder, press the Shift key, then click the end of the designed

robotic arm, and finally click the Alignment icon in the menu in the upper

right corner. After that, nine alignment points appear, and click the proper

alignment points, as shown in Figure 4.12.

95

Figure 4.12 Alignment

Step 7: Move the cylinder rightward. Click the cylinder, and press the

right key in the keyboard to move the cylinder, as shown in Figure 4.13.

Figure 4.13 Moving the cylinder

Step 8: Cut the end of the designed robotic arm with the cylinder, and dig

a hole at that end to fix the water pipe. Set the cylinder to hole, and

combine it with such end, as shown in Figure 4.14.

96

Figure 4.14 Cutting the end

3. Summary

Which basic objects do you need in designing a water pipe clamp? ____

 __

Which instructions do you need in designing a water pipe clamp? _____

 __

97

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve learned how to implement the absorption function

I’ve learned how to implement the combination function

I’ve learned how to implement the subtraction function

From the above task we have made and tested each part of the automatic

watering system. Now, let’s build the system.

1. Observation

Observe how the teacher builds the automatic watering system. Then,

record the key steps of this process, and fill in the blanks below.

2. Steps

(1) Prepare Hardware

Step 1: According to the hardware connection diagram, connect the

circuit, as shown in Figure 4.15.

Step 1: Get soil moisture through .

Step 2: When soil moisture is lower than 30%, the robotic arm will control

the water pipe and move it to the position above the pot plant.

Step 3: level into the relay, and then the pump starts to draw

water.

Task 5: Build the Automatic Watering System

98

Figure 4.15 Hardware connection diagram

Step 2: Design the experiment map, and according to it set the

equipment, as shown in Figure 4.16.

Figure 4.16 Experiment map

Step 3: Read the automatic watering flow chart, as shown in Figure 4.17.

99

Start

Initialize the
robotic arm s

position

Read the value of

the soil sensor

Make LCD1602
show the soil

moisture value

If the soil moisture is

below 30%?

Move the robotic
arm on the top of

the pot plant

Draw water from

the water pump

Delay for 2

seconds

Turn off the water

pump

Return the robotic
arm to the initial

position

True

False

Figure 4.17 Automatic watering flow chart

100

Step 4: Enable Arduino programming software. Import the library files of

the robotic arm and LCD1602.

1 #include <Wire.h>

2 #include <LiquidCrystal_I2C.h>

3 #include <MagicianLite.h>

Step 5: Define the object and the variable.

4 LiquidCrystal_I2Clcd(0x20,16,2); //Define the LCD object

5 #define HumidityPin A11 //Define the name of the pin of the soil humidity sensor

6

7

8

Int HumidityValue; //Define the value variable of the soil humidity sensor

Int HumidityPercent; //Define the percent variable of the value of the soil

humidity sensor

int Relay = 9; //Define the pin of the relay

Step 6: Initialize all parameters.

9 Void setup()

10 {

11

12

13

14

15

16

pinMode(Relay,OUTPUT); //Set the port that controls the relay to output

MagicianLite_Init(); //Initialize the robotic arm

MagicianLite_SetPTPCmd(JUMP_XYZ,200,0,50,0);//Initialize the position of the

robotic arm

lcd.init(); //Initialize LCD

lcd.backlight();

}

Step 7: Obtain the soil humidity value, and display it on LCD1602. Based

on the above task, independently encode the current step.

17 Void loop()

18 {

19

20

21

22

23

24

25

26

Step 8: Decide whether the soil humidity is lower than 30%. If yes, move

the robotic arm to the position above the pot plant. From practical

operation, obtain the coordinates of the robotic arms. The coordinates of

the robotic arm in the program below is for reference.

101

27 if(HumidityPercent<=30)

28 {

29

30

MagicianLite_SetPTPCmd(JUMP_XYZ,14,-90,50,0);//Move the water pipe to the

position of the pot plant

delay(1000);

Step 9: Switch on the pump to draw water. Two seconds later, switch off

it.

31 digitalWrite(Relay, HIGH);

32 delay(2000);

33 digitalWrite(Relay, LOW);

Step 10: Move the robotic arm to its original position.

34 MagicianLite_SetPTPCmd(JUMP_XYZ,200,0,50,0);//The robotic arm returns to

its original position

35 }

36

37

Delay (50) ; //Sampling interval of the temperature and humidity sensor</1639>

}

Step 11: Compile and upload the program.

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve connected the hardware of the automatic watering

system

I’ve programmed automatic watering

The automatic watering steps: _________________________________

 __

 __

 __

102

LESSON

Team Name: Team member: Date:

 Skillfully use movement instructions by controlling the movement of the

robotic arm.

 Learn the instructions corresponding to different states of the flexible

gripper by controlling the flexible gripper to grasp and place objects.

 Learn the “while” statement by controlling the robotic arm, pick one

radish.

 Review the "for” statement and derive the numerical change formula by

controlling the robotic arm to pick one row of radishes.

 Review the loop structure by controlling the robotic arm to pick one field

of and two fields of radishes.

Overview

With the advancement of science and technology, agriculture has

gradually realized mechanized production. From sowing and watering to

automatic temperature control and automatic light control, mechanized

production has become increasingly diverse. This experiment simulates

the use of robotic arm picking instead of manual picking, thereby

improving picking efficiency and reducing picking costs. Next we will pick

one radish, one row of radishes, one field of and two fields of radishes.

Objective

 Experiment 5

Intelligent Picking

103

Equipment Picture Name Quantity

Dobot Magician Lite

Robotic arm
1

Gripper kit 1

Power adapter 1

USB type-C interface

cable
1

Arduino Mega 2560

control board
1

Arduino shield

expansion board
1

USB square port

cable
1

10Pin-DuPont head

adapter cable
1

Radish field 2

Equipment

104

Red and white

radishes
Several

basket 2

 Take care when using electricity.

 Before the experiment, check whether the experiment equipment is

complete and intact. If there is any omission or damage, please report to

the teacher.

 Any specific operations in the experiment shall be performed according to

the experiment manual. If you have any questions, please promptly ask

the teacher.

 During the experiment, the joints will start to work as the robotic arms are

powered on. In that case, do not move the joints of the robotic arms hard

if you do not press the unlock key.

 Report any device fault during the experiment to your teacher in a timely

manner, and do not handle it yourself.

 Arrange all devices after the experiment. You shall not leave the lab

before check by the group leader.

When radishes are ripe, people usually pick them manually or by machine.

Then, how should we do so with the robotic arm? Next, we will first try picking

one radish with the robotic arm.

5. Analysis

Analyze the methods and steps to pick one radish.

Requirements

Task 1: Pick One Radish

105

6. Steps

(1) Prepare Hardware

Step 1: Set the positions for picking one radish, as shown in Figure 5.1.

Figure 5.1 Placement position diagram

Step 2: Connect the equipment for picking one radish, as shown in Figure

5.2.

To pick one radish: Pick with the grippers of the robotic arm.

Steps to pick one radish:

First move the robotic arm to , pull out; then move the

robotic arm to , and place the radish on .

106

Figure 5.2 Connection diagram

Step 3: Prepare the experiment equipment ourselves, and connect it.

(2) Design Program

Step 1: Analyze how to pick one radish with the robotic arm. Then, read

the flow chart, as shown in Figure 5.3.

Start

Initialize the setting

Move to the carrot

sowing field

The robotic arm

plucks a carrot

Place the carrot to the

basket

End

Figure 5.3 Experiment map

Step 2: Set the header file. At the beginning of the program, there is a

header file, which contains the port definition and common functions of

the robotic arm. The programming method is as follows.

107

1 #include<MagicianLite.h>// Set header file

Step 3: Initialize the settings. In the setup function, initialize the robotic

arm, setting its movement ratio and the lifting height of the JUMP

movement. The programming method is as follows.

2

3

4

5

6

void setup() {

MagicianLite_Init(); //Initialize the robotic arm

MagicianLite_SetPTPCommonParams (80,80); // Set the robotic arm movement ratio

MagicianLite_SetPTPJumpParams (80); // Set the lifting height of the JUMP movement

}

Step 4: In the loop function, move the machine to the designated position

of the radish field. The programming method is as follows.

7

8

void loop(){

MagicianLite_SetPTPCmd (JUMP_XYZ, 260,0,15,0); // moved to the radish field

Step 5: Pull out the radish using the robotic arm. After the robot arm

moves to the radish field, it starts to pick radishes. Here, use the flexible

grippers to grab the radish, and set the state of the gripper to grab. Delay

a while after grasping it. The programming method is as follows.

9

10

11

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

}

108

Step 6: Put the radish in the basket.

Step 7: Set the gripper to close.

The control method of the flexible gripper at the end is similar to

that of the suction cup, except that the programming statement of the

control gripper contains two function parameters, and the programming

method is as follows:

MagicianLite_SetEndEffectorGripper(boolisEnable,boolisGriped)

As the gripper contains three states, grabbing, opening, and closing, the

return values of the two parameters are different, and the state of the

gripper is different. The relationship between the gripper state and the

parameter return value is as follows:

Gripper state Grab Open Close

First

parameter
true true false

Second

parameter
true false false

(1) After the robotic arm pulls out the radish, JUMP moves above

the basket position, and the coordinate values of the X, Y, and Z axes

are 240, 200, and 0.

(2) Put the radish in the basket, keeping the gripper open.

(3) Delay for 200ms.

(4) Write the related program.

After placing the radish, keep the grippers closed and write a

program to set the grippers closed

109

Step 8: According to the analysis of the above steps, summarize the

program as follows.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#include<MagicianLite.h>// Set header file

voidsetup() {

MagicianLite_Init();//Initialize the robotic arm

MagicianLite_SetPTPCommonParams (80,80); // Set the robotic arm movement ratio

MagicianLite_SetPTPJumpParams (80); // Set the lifting height of the JUMP movement

}

void loop(){

MagicianLite_SetPTPCmd (JUMP_XYZ, 260,0,15,0); // Move to the radish field

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,20,0); // JUMP moves upon the basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

MagicianLite_SetHOMECmd (); // Robot returns to zero

}

Step 9: Compile the program and upload the program to Arduino control

board, and observe how the robotic arm picks the radish.

Step 10: Pick one radish. Above the setup function, define an integer

variable i and set the initial value to 0 to calculate the number of

executions of the robotic arm; in the loop function, place the entire picking

program in the while loop. The judgment condition for the while loop is i

<1. Upon picking completion, the variable i increases by 1. The

programming method is as follows.

Observation shows that the robot arm picks radishes more than

once. Why?

This is because the entire picking program is in the loop function.

In that case, the robotic arm will pick the radish repeatedly.

110

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

#include<MagicianLite.h>// Set the header file

inti = 0;

voidsetup() {

MagicianLite_Init();//Initialize the robotic arm

MagicianLite_SetPTPCommonParams (80,80); // Set the robotic arm movement ratio

MagicianLite_SetPTPJumpParams (80); // Set the lifting height of the JUMP movement

}

void loop(){

while(i < 1){

MagicianLite_SetPTPCmd (JUMP_XYZ, 260,0,15,0); // Move to the radish field

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,20,0); // JUMP moves above the basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

MagicianLite_SetHOMECmd (); // Robot returns to zero

i++;

}

}

Step 11: Compile the program, upload the program to Arduino control

board, and observe how the robotic arm picks the radish.

7. Summary

8. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

(1) In this experiment, the role of the “while” statement is:

(2) The relationship between the state of the flexible gripper and the

parameter return value

Gripper state Grab Open Close

First

parameter

Second

parameter

111

Assessment Content
Completion

Status

I’ve skillfully used the instructions to move the robotic arm

I’ve used the “while” statement

I’ve learned how to control the flexible gripper

I’ve used different instructions to control the flexible gripper

I’ve programmed to pick one radish

We are able to pick one radish with the flexible gripper of the robotic arm. Next,

we will try picking one row of (3) radishes with the robotic arm.

1. Analysis

Analyze the main steps to pick one radish.

2. Steps

(1) Prepare Hardware

Step 1: Set the positions for picking a row of radishes, as shown in Figure

5.4.

Task 2: Pick One Row of Radishes

Pick the first radish: Move to the first radish position, pull out the radish,

and place it in the basket.

Pick the second radish:

Pick the third radish:

112

Figure 5.4 Placement location diagram

Step 2: Connect the hardware for picking one row of radishes in the same

way in Task 1, as shown in Figure 5.2.

Step 3: Prepare the experiment equipment ourselves and connect the

equipment.

(2) Design Program

Step 1: Analyze the process of picking one row of radishes, and read the

flow chart, as shown in Figure 5.5.

Start

Initial setting

Pick the first carrot

Pick the second

carrot

Pick the third carrot

Figure 5.5 Flow chart of picking a row of radishes

Step 2: Set the header file. The programming method is as follows:

113

1 #include<MagicianLite.h>// Set header file

Step 3: Initialize the equipment. In the setup function, initialize the robotic

arm, set the ratio of the movement speed and acceleration of the

movement of the robotic arm, and set the lifting height of the JUMP

movement. The programming method is as follows.

2

3

4

5

6

Void setup() {

MagicianLite_Init();//Initialize the robotic arm

MagicianLite_SetPTPCommonParams (80,80); // Set the robotic arm movement ratio

MagicianLite_SetPTPJumpParams (80); // Set the lifting height of the JUMP movement

}

Step 4: In the loop function, allow the robotic arm to JUMP above the

initial position of the radish field. The programming method is as follows.

7

8

9

void loop() {

MagicianLite_SetPTPCmd (JUMP_XYZ, 220, -60,100,0); // JUMP moves to the

initial position of the radish planting land

Step 5: Pick one row of radishes. According to Task 1, program the

robotic arm to pick a row of radishes as follows:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

MagicianLite_SetPTPCmd (JUMP_XYZ, 220, -60,20,0); // First radish position

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,30,0); // JUMP moves above the basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

MagicianLite_SetPTPCmd (JUMP_XYZ, 220,0,20,0); // The second radish position

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,30,0); // JUMP moves to the position above the

basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

MagicianLite_SetPTPCmd (JUMP_XYZ, 220,60,20,0); // The third radish position

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,30,0); // JUMP moves to the position above the

114

31

32

basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

Step 6: Pick a row of radishes when the judgment condition (a <3) is

satisfied in the “for” loop.

See the coordinate axis in Figure 5.6. When the robotic arm picks from

left to right, the X axis remains unchanged, and the Y axis coordinate

value gradually increases. Describe the change in the Y-axis coordinate

during the picking process. Try writing a formula for the change in the

Y-axis coordinate (note that the formula change is based on the actual

picking spacing).

A

X

Y

Figure 5.6 Coordinate axes

The programming method for picking one row of radishes is as follows:

10

11

12

for(int a = 0; a<3; a +=1){

MagicianLite_SetPTPCmd (JUMP_XYZ, 220, -60 + a * 60,20,0); // Radish spacing 60mm

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

According to the above program, we find that when the robotic

arm picks the first, second, and third radishes, they have different

initial positions.

Since there are almost same steps and program for picking a

row of radishes, we can use a loop structure. Here we use the “for”

statement.

115

13

14

15

16

17

18

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,30,0); // JUMP moves to the position above the

basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

 }

Step 7: According to the analysis of the above steps, summarize the

program for picking one row of radishes as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

#include<MagicianLite.h>// Set header file

void setup() {

MagicianLite_Init();//Initialize the robotic arm

MagicianLite_SetPTPCommonParams (80,80); // Set the robotic arm motivement ratio

MagicianLite_SetPTPJumpParams (80); // Set the lifting height of the JUMP move

}

void loop() {

MagicianLite_SetPTPCmd (JUMP_XYZ, 220, -60,100,0); // JUMP moves to the initial position

of the radish field

 for(int a = 0; a<3; a +=1){

MagicianLite_SetPTPCmd (JUMP_XYZ, 220, -60 + a * 60,20,0); // Radish spacing 60mm

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,30,0); // JUMP moves to the position above the

basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

 }

MagicianLite_SetHOMECmd (); // Robotic arm returns to zero

}

Step 8: Compile the program, upload it to Arduino control board, and

observe how the robotic arm executes the picking task.

116

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve skillfully used the instructions to control the flexible

gripper

I’ve learned to derive the formula for change in the Y-axis

coordinate

I’ve used the “for” statement

I’ve programmed to pick one row of radishes

We are able to pick one row (3) of radishes with the flexible gripper of the

robotic arm. Next, we will try picking one field of radishes (three rows and three

columns) with the robotic arm.

1. Analysis

Analyze the main steps to pick one field of radishes.

(1) In this experiment, the role of the “for” statement is: ___________

(2) Changes in the Y-axis coordinates when the robot arm picks a row

of radishes ___

Try writing the formula for change in the Y-axis coordinate __________

Task 3: Pick One Field of Radishes

117

2. Steps

(1) Prepare Hardware

Step 1: Set the positions for picking one field of radishes, as shown in

Figure 5.7.

Figure 5.7 Placement location diagram

Step 2: Connect the equipment for picking one field of piece of radishes

in the same way in Task one, as shown in Figure 5.2.

Step 3: Prepare the experiment equipment ourselves and connect it.

(2) Design Program

Step 1: Analyze how the robotic arm picks one field of radishes, and read

the flow chart, as shown in Figure 5.8.

Pick the first row of radishes:

Pick the second row of radishes:

Pick the third row of radishes:

118

Start

Initial setting

Pick the first line of

carrots

Pick the second line

of carrots

Pick the third line of

carrots

Figure 5.8 Implementation flow chart

Step 2: Observe the characteristics of the radish field. We know that

radishes are grown in three rows and three columns. When picking

radishes, we can first pick one row, then the next, and so on.

Step 3: Pick one field of radishes. According to Task 2, program the

robotic arm to picking one field of radishes as follows:

1

2

3

4

5

6

7

8

9

10

11

for (int a = 0; a <3; a + = 1) {// picking the first row of radishes

MagicianLite_SetPTPCmd (JUMP_XYZ, 220, -60 + a * 60,20,0); // Radish spacing 60mm

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,30,0); // Move above the basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

 }

MagicianLite_SetHOMECmd (); // Robotic arm returns to zero

Review the formula for change in the Y-axis coordinate picking

one row of radishes in Task 2.

In Arduino, write a program to pick one row of radishes.

119

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

for (int a = 0; a <3; a + = 1) {// Pick the second row of radishes

MagicianLite_SetPTPCmd (JUMP_XYZ, 340, -60 + a * 60,20,0); // Radish spacing 60mm

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,30,0); // Move above the basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

 }

MagicianLite_SetHOMECmd (); // Robotic arm returns to zero

for (int a = 0; a <3; a + = 1) {// Pick the third row of radishes

MagicianLite_SetPTPCmd (JUMP_XYZ, 220, -60 + a * 60,20,0); // Radish spacing 60mm

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,30,0); // Move above the basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

 }

MagicianLite_SetHOMECmd (); // Robot returns to zero

Step 4: Observe the change in the coordinates when the robotic arm

picks three rows of radishes. According to Figure 5.9, neatly place the

three rows of radishes to be picked in parallel in front of the robotic arm.

According to the above program, we find that when the robotic

arm picks the first, second, and third rows of radishes, the three rows

have different initial positions.

Since there are almost same steps and program for picking a row

of radishes, we can use a nested loop structure. Here we use the “for”

statement again.

Loop nesting is a common method in logic programs. The inclusion of

another loop statement in a loop body statement is called loop nesting.

120

When the robotic arm picks each row of radishes from back to front, the

corresponding Y-axis and X-axis coordinate values gradually increase.

Figure 5.9 Coordinate axes

When the robotic arm picks one field of radishes (three rows and three

columns), the programming method is as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 for(int b = 0; b<3; b +=1){

for(int a = 0; a<3; a +=1){

MagicianLite_SetPTPCmd (JUMP_XYZ, 220 + b * 60,60 + a * 60,20,0); // Radish spacing is

60mm

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,30,0); // Move above the basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

}

 }

MagicianLite_SetHOMECmd (); // Robotic arm returns to zero

}

Describe the change in the X-axis coordinate when the robotic

arm picks three rows of radishes.

Try writing the X-axis coordinate change formula (note that the

formula change is based on the actual picking spacing).

121

Step 5: According to the analysis of the above steps, summarize the

program for picking one row of radishes is as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#include<MagicianLite.h>// Set header file

void setup() {

MagicianLite_Init();//Initialize the robotic arm

MagicianLite_SetPTPCommonParams (80,80); // Set the robotic arm motivement ratio

MagicianLite_SetPTPJumpParams (80); // Set the lifting height of the JUMP movement

}

void loop() {

MagicianLite_SetPTPCmd (JUMP_XYZ, 220, -60,100,0); // JUMP moves to the initial position

of the radish field

 for(int b = 0; b<3; b +=1){

for(int a = 0; a<3; a +=1){

MagicianLite_SetPTPCmd (JUMP_XYZ, 220 + b * 60,60 + a * 60,20,0); // Radish spacing is

60mm

MagicianLite_SetEndEffectorGripper (true, true); // Grab the radish

delay(200);

MagicianLite_SetPTPCmd (JUMP_XYZ, 240,200,30,0); // moved above the basket

MagicianLite_SetEndEffectorGripper (true, false); // Place the radish

delay(200);

MagicianLite_SetEndEffectorGripper (false, false); // The gripper is in a natural state

}

 }

MagicianLite_SetHOMECmd (); // Robotic arm returns to zero

}

Step 5: Compile the program, upload it to Arduino control board, and

observe how the robotic arm picks radishes.

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

(1) In this experiment, the role of the “for” statement is: ___________

(2) Change in the X-axis coordinate when the robotic arm picks three

rows of radishes ______________________________________

Try writing the formula for change in the X-axis coordinate __________

122

Assessment Content
Completion

Status

I’ve learned to derive the formula for change in the X-axis and

Y-axis coordinates

I’ve known about nested loops and their role

I’ve used the “for” statement multiple times

I’ve programmed to pick one field of radishes

We are able to pick one field of radishes (three rows and three columns) with

the flexible gripper of the robotic arm. Now, we will try picking two fields of

radishes with the robotic arm.

1. Analysis

Analyze the main steps to pick two fields of radishes.

2. Steps

(1) Prepare Hardware

Step 1: Set the positions for picking two fields of radishes, as shown in

Figure 5.10.

Task 4: Pick Two Fields of Radishes

Pick the first field of radishes:

Pick the second field of radishes:

123

Figure 5.10 Placement location diagram

Step 2: Connect the equipment for picking two fields of radishes in the

same way as in Task 1, as shown in Figure 5.2.

Step 3: Prepare the experiment equipment ourselves and connect it.

(2) Design Program

Complete this task yourselves. See Figure 5.11 for the flow chart of

picking two fields of radishes.

124

Start

Initial setting

Pick the first line of carrots

from the first carrot field

Pick the second line of

carrots from the first carrot

field

Pick the third line of carrots

from the first carrot field

Pick the first line of carrots

from the second carrot field

Pick the second line of

carrots from the second

carrot field

Pick the third line of carrots

from the second carrot field

Figure 5.11 Flow chart of picking two fields of radishes

3. Summary

(1) Change in the Y-axis coordinate when the robotic arm picks a row

of radishes ___

Try writing the formula for change in the Y-axis coordinate __________

(2) Change in the X-axis coordinate when the robotic arm picks three

rows of radishes ______________________________________

Try writing the formula for change in the X-axis coordinate __________

125

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve skillfully derived formulas for changes in the X-axis and

Y-axis coordinates

I’ve used the nested loop

I’ve used the “for” statement multiple times

I’ve programmed to pick two fields of radishes

126

LESSON

Team name: Team member: Date:

1. Learn the drawing function in Tinkercad by designing radish leaves.

2. Master the method of basic shape-based modeling by designing radish

roots.

3. Master the programming modeling skills in Tinkercad by learning the array

function in Tinkercad.

4. Understand how to control a color sensor by controlling the color sensor.

5. Master the print () function by displaying the RGB value through the serial

port.

6. By programming the robotic arm to sort the radishes, master how to use the

color sensor to determine colors, and how to use the robotic arm to grab

radishes.

Objective

Because of the better weather, the farm's radishes have a good harvest.

Seeing baskets of white and red radishes, everyone feels happy but

troubled. When so many radishes are picked, they are not separated. To

manually sort them, you will take long time and cost. Can you help find a

solution? The solution proposed in this experiment is to simulate the

radish sorting in the laboratory. First, build white radish and red radish

models. Then build a radish basket model to hold the sorted radishes,

and use the color sensor to print the red and white RGB values. Finally,

compare the RGB values to complete the sorting task.

Overview

 Experiment 6

Automatic Sorting

127

Equipment Picture Name Quantity

Dobot Magician Lite

Robotic arm
1

Gripper kit 1

USB Type-C interface

cable
1

Power adapter 1

Arduino Mega 2560

Control board
1

Arduino shield

expansion board
1

USB square port cable

(Type-B cable)
1

10Pin-DuPont adapter

cable
1

Equipment

128

Equipment Picture Name Quantity

Color sensor 1

1Pin-DuPont Line

(with male & female

connector)

Some

Basket 2

Radish Some

3D printer 1

3D printing material

PLA
4

 Take care when using electricity.

 Before the experiment, check whether the experiment equipment is

complete and intact. If there is any omission or damage, please report to

the teacher.

 Any specific operations in the experiment shall be performed according to

the experiment manual. If you have any questions, please promptly ask

the teacher.

Requirements

129

 During the experiment, the joints will start to work as the robotic arms are

powered on. In that case, do not move the joints of the robotic arms hard

if you do not press the unlock key.

 Report any device fault during the experiment to your teacher in a timely

manner, and do not handle it yourself.

 Arrange all devices after the experiment. You shall not leave the lab

before check by the group leader.

To simulate the scenario of radish sorting, we first need radishes. Use

Tinkercad to design the radish model.

1. Analysis

Analyze the steps to design the radish model based on the shape and

structure of the radish. Then, complete the design steps in the blanks in

the table below.

2. Steps

Step 1: Create a new 3D design project, as shown in Figure 6.1.

Step 1: Analyze the shape of radish, which can be divided into upper part

the leaves and lower part the roots.

Step 2: Select the drawing function to draw the radish leaves.

Step 3: Select shape, design.

(Hint: how to design the root of the lower part of the radish)

Step 4:.

(Hint: Radish is a whole, and leaves and roots cannot be separated)

Task 1: Design the Radish Model

130

Figure 6.1 Creating the project

Step 2: Select Scribble in the basic shapes, as shown in Figure 6.2.

Figure 6.2 Choosing Scribble

Step 3: Draw the leaves of the upper half of the radish, as shown in

Figure 6.3.

131

Figure 6.3 Leaf of the radish

Step 4: Set the height of the upper part of the radish to 8 mm, and the

length and width to about 20 mm and 18 mm, as shown in Figure 6.4.

Figure 6.4 Setting the length, width, and height

Step 5: Analyze the root of the radish to be long-horned, cylindrical,

select Sphere, set the height to 18 mm, the length and width to 20 mm

and 45 mm, as shown in Figure 6.5.

Figure 6.5 Setting the length, width, and height of the sphere

132

Step 6: Move the leaves and roots of the radish to appropriate positions,

select one part, hold down the Shift key to select another part, and then

click Align. The alignment method is shown in Figure 6.6.

Default vision Left view

Figure 6.6 Alignment

Step 7: After aligning, click Group to complete the radish modeling.

Export the model and slice it for 3D printing.

Design the radish size based on the farmland. You can set the size

according to the actual situation.

133

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve observed the structure of the radish

I’ve used the drawing function

I’ve designed the radish leaf

I’ve known the shape of the radish root

I’ve designed the radish model

After designing the radish model, we also need to design a radish basket for

sorted radishes. The basket size needs to match the radish model, so the size

requirements are high. We can use Tinkercad to complete the modeling task

and design more accurate size. Let's try building a model through

programming.

1. Analysis

Ask the teacher to show the printed radish basket model. Observe the

radish basket model, analyze the steps to design the basket, and

complete the steps in the blanks in the table below.

(1) The structure of the radish can be divided into: _______________

The function of the designed radish leaf is: _____________________ ,

The shape of the radish root is: _______________________________

(2) In this test task, the grouping function is: ____________________

 __

Task 2: Design the Radish Basket Model

134

2. Steps

The first step: Design the size. Measure the size of the radish model, and

calculate the appropriate size of the basket based on the actual radish to

basket size ratio.

Step 2: Log in to your Tinkercad account and select Codeblocks to

create a new code block, as shown in Figure 6.7.

In addition to allowing a basket to hold as many radishes as

possible, when designing the ratio of radish to basket you have to

consider the weight and volume for transport convenience, and achieve

the best ratio.

Step 1: Measure the designed radish model and calculate its size.

Step 2: Select the ring as the top edge of the basket and the cone as

the main body.

Step 3: Create a new hollow cone and use to turn the solid

basket into . (Hint: fill in the function of Tinkercad and the

shape of the basket)

Step 4: Design the pattern module of the basket.

Step 5: Pattern module, arrange the pattern around the basket. (Fill in

the function of Tinkercad)

Step 6: basket and pattern module. (Fill in the function of

Tinkercad)

135

Figure 6.7 Creating a new code block

Step 3: Read the radish basket modeling flow chart based on the

experiment analysis, as shown in Figure 6.8.

136

Start

Create a new object

named Basket

Add a sphere and the

top edge for the basket

Add a substantial cone

as the entity of the

basket

Add a hollow cone

Merge the cone

Design the pattern

module of the basket

Array the pattern

module

End

Merge the pattern

module and basket

Figure 6.8 Radish basket modeling flow chart

Step 4: Create a new object, click the Modify tab, and drag out the

"create new object object10" block, and create a new name "basket", as

shown in Figure 6.9.

137

Figure 6.9 Creating the new object

Step 5: Add the torus as the top edge of the basket, click the Shapes tab,

drag out the "torus" block, select solid, and fill in the parameter radius of

45 mm, as shown in Figure 6.10.

Figure 6.10 Adding the torus

Step 6: Move the torus to the coordinate point (0,0,30), as shown in

Figure 6.11.

Figure 6.11 Moving

Step 7: Add two cones as the main body of the basket. The first cone is

hollow, with the top radius of 43 mm, the bottom radius of 33 mm, and the

height (H) of 60 mm. Move the first cone to the position (0, 0, 10). The

second cone is solid, with the top radius of 45 mm, the bottom radius of

35 mm, and the height (H) of 60 mm. Move the second cone to the

position (0, 0, 0), as shown in Figure 6.12.

138

Figure 6.12 Adding two cones

Step 8: Create a group and select solid, as shown in Figure 6.13.

Figure 6.13 Creating the group (solid)

Step 9: Design the pattern module. Create the position of the variable

control module and set the initial value of the variable to "0", as shown in

Figure 6.14.

Calculate the basket size based on the size of the hollow cone and

the solid cone.

139

Figure 6.14 Creating the variable

Step 10: Add a cylinder, set it as hollow, with the radius of 13 mm and the

height (H) of 6 mm, and move the cylinder to the position (X: 0, Y: -42, Z:

-20 + i), as shown in the figure 6.15.

Figure 6.15 Adding the cylinder and setting its movement coordinates

Step 11: Add seven more cylinders and set the movement coordinates of

each cylinder, as shown in Figure 6.16.

140

Figure 6.16 Adding another seven cylinders and setting their movement coordinates

Step 12: Set the array pattern module, set i to i + 20, and the Z coordinate

increases by 20 mm each time. Add the cylinder part and repeat the

addition 3 times, as shown in Figure 6.17.

You can design pattern modules yourselves.

141

Figure 6.17 Setting the variable and repeating the addition 3 times

Step 13: Add Create Group outside the loop body, select solid, select the

final color, and move the entire built model to the position (0, 0, 30), as

shown in Figure 6.18.

Why do we need to repeat the steps to include all the blocks that

create the pattern module?

142

Figure 6.18 Combination model

Step 14: Run the program and view the modeling animation, as shown in

Figure 6.19.

143

Figure 6.19 Running the program

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve used the movement module

I’ve used the variable module

I’ve used the repeated execution module

(1) Set the movement coordinates: ___________________________

 __

(2) Describe the role of "create group": ________________________

 __

(3) The array functions in Tinkercad are implemented through ______

 __

What effect can we achieve by repeating the steps three times to

add eight cylinders and change the movement coordinates?

144

I’ve implemented the array function

I’ve designed the radish basket model

A color sensor is a sensing device that compares the color of an object with a

demonstrated reference color to detect the color. In this experiment, we will

rely on the serial port monitor to display the RGB value of the color of the light

reflected by the red radish and white radish to the sensor, and analyze the

difference between the RGB values of red radish and white radish.

1. Analysis

Analyze the steps to obtain the RGB values. Then, complete the steps in

the table below.

2. Steps

(1) Prepare Hardware

When we select a color filter, it only allows a certain primary

color to pass, and prevents other primary colors from passing. For

example: a red filter only allows red in the incident light to pass, but

blocks blue and green. Thus, we can obtain the maximum value of red

light intensity. By comparing the values of the three light intensity

values RGB, we can analyze the color of the light reflected on the

sensor, and further determine the color of the object.

Step 1: Determine whether the color sensor is connected properly.

Step 2: If the connection is normal, the serial port displays ;

otherwise, stop and check the connection of the color sensor.

Step 3: Get of the color sensor.

Step 4: of the color sensor.

Task 3: Display the RGB Value on the Serial Port

145

Step 1: Connect the hardware, as shown in Figure 6.20.

Figure 6.20 Hardware connection diagram

Step 2: Prepare the experiment equipment. Connect it yourselves.

(2) Design Program

Step 1: Analyze and print the color sensor data implementation process,

and draw a flow chart, as shown in Figure 6.21.

146

Star

Initialize

Set the serial baud

rate as 115200

Print the sensor is

connected

If the sensor is connected?

Obtain the RBG

value

Print the RBG value

Stop and check the

sensor

Figure 6.21 Flow chart

Step 2: Set the header file and get an object. The programming method is

as follows:

1

2

3

4

#include<Wire.h>//Header file

#include"DFRobot_TCS34725.h"//Header file

DFRobot_TCS34725 tcs = DFRobot_TCS34725

(TCS34725_INTEGRATIONTIME_50MS, TCS34725_GAIN_4X)；// Get an object

Step 3: Set the setup function and set the baud rate to 115200 to judge

whether the sensor is connected normally.

5

6

7

void setup(){

Serial.begin(115200); // Set the baud rate to 115200

if(tcs.begin()){ // Detect the sensor

147

8

9

10

11

12

13

14

Serial.println ("Sensor connection is normal"); // Print "Sensor connection is normal"

}

else{

Serial.println("Please check the sensor connection");

while (1); // End

}

}

Step 4: Set the main loop function.

1) Get the RGB value.

15

16

17

18

voidloop(){

intclear, R, G, B;

tcs.getRGBC(&R, &Gn, &B, &clear); // Get RGB value

}

2) Print the RGB values.

19

20

21

22

Serial.print("\tR:\t"); Serial.print(R); // Print the value of R

Serial.print("\tG:\t"); Serial.print(G); // Print the value of G

Serial.print("\tB:\t");Serial.print(B); // Print the value of B

Serial.println("\t");

Step 7: Integrate the program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

#include<Wire.h>//Header file

#include "DFRobot_TCS34725.h"//Header file

DFRobot_TCS34725 tcs = DFRobot_TCS34725

(TCS34725_INTEGRATIONTIME_50MS, TCS34725_GAIN_4X)；// Get an object

voidsetup(){

Serial.begin(115200); // Set the baud rate to 115200

if(tcs.begin()){ // Detecting sensor

Serial.println("Sensor connection is normal");// Print "Sensor connection is normal"

}

else{

Serial.println("Please check the sensor connection");

while (1); // End

}

}

voidloop(){

intclear, R, G, B;

tcs.getRGBC(&R, &G, &B, &clear); // Get RGB value

Serial.print("\tR:\t"); Serial.print(R); // Print the value of R

Serial.print("\tG:\t"); Serial.print(G); // Print the value of G

Serial.print("\tB:\t");Serial.print(B); // Print the value of B

148

21

22

Serial.println("\t");

}

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve used the color sensor

I’ve judged whether the color sensor is connected normally

I’ve used the instruction to obtain the RGB values of the color

sensor

I’ve implemented the program to display RGB value on the

serial port

Observe the relationship between the RGB values of red radish and

white radish to find the maximum value.

(1) The conditions for judging that the color sensor is normally

connected are: __

 __

(2) The instruction to obtain the RGB value of the color sensor is: ___

 __

(3) The instruction to display the RGB value of the color sensor is: __

 __

(4) The maximum value in red radish RGB is: The

maximum value in white radish RGB is: _____________________

 __

149

I’ve compared the relationship between the RGB values of

red radishes and white radishes

Compare the RGB values of red radishes and white radishes, and find the

conditions for judging red radishes. Thus, we can start to sort radishes. Let's

look at how to use the robotic arm to automatically do so.

1. Analysis

Analyze the steps to sort radishes and then complete the steps in the

blanks in the table below.

2. Steps

(1) Prepare Hardware

Step 1: Set the scenario of sorting radishes, as shown in Figure 6.22.

Step 1: Determine the number of radishes to grab.

Step 2:The first radish.

Step 3: Move the radish to position.

Step 4: Judge.

Step 5: If it is red radish, then, otherwise,.

Step 6: Calculate the number of radishes captured and re-grab them.

Task 4: Sort the Radish

150

Figure 6.22 Scenario placement diagram

Step 2: Connect the hardware, as shown in Figure 6.23.

Figure 6.23 Hardware connection diagram

(2) Design Program

Step 1: Analyze the process of sorting red and white radishes, and draw

a flowchart, as shown in Figure 6.24.

151

Start

Initialize

Calculate the quantity i

that will be grabbed

i<6?

Open the gripper

Move to the radish

placement area

Grab the radish

Move to where the

color detection is

If it is recognized as

carrot?

Move to the carrot

placement area

Place the radish

Delay 500 milliseconds

i=i+1

End

Move to the turnip

placement area

Place the radish

False

False

True

True

Figure 6.24 Radish sorting flow chart

Step 2: Set the header file and get the color sensor object. This task

requires MagicianLite, so you need to add the header file of MagicianLite.

152

1

2

3

4

5

#include<MagicianLite.h>// Set header file

#include<Wire.h>//Header file

#include"DFRobot_TCS34725.h"//Header file

DFRobot_TCS34725 tcs = DFRobot_TCS34725

(TCS34725_INTEGRATIONTIME_50MS, TCS34725_GAIN_4X)；

Step 3: Define variables, define the integer variable i, and record the

number of picks.

6 int i=0; // Record the number of grab times

Step 4: Set up the setup function.

1) Initialize the control board, set the movement ratio of the robotic arm

and move the end of the robotic arm to the position above the radish.

Try writing the corresponding code yourself.

2) Set the baud rate to 115200 and judge whether the sensor is

connected normally. As per Task 3, write the code yourselves.

Step 5: Set the main loop function.

1) While loop: for example, to grab six radishes, loop six times; before

grabbing them, define the related variables. The programming

method is as follows:

16

17

18

voidloop(){

intclear, R, G, B;

While(i<6)

153

19 }

2) Program the robotic arm to grab the radish. First, open your gripper

and move it to the radish basket. Close the gripper to grab the

radish and move the robotic arm upward.

20

21

22

23

24

25

MagicianLite_SetEndEffectorGripper(true,false) // Open gripper

//Move to the radish grabbing position

MagicianLite_SetPTPCmd(JUMP_XYZ, 318.18,-58.45,36.90,0);

MagicianLite_SetEndEffectorGripper(true,true); // Grab the radish

MagicianLite_SetPTPCmd(MOVL_INC, 0,0,40,0); // Move upward

delay(200);

3) After catching the radish, move it to the monitoring color position.

The color sensor judges whether the radish is red radish or white

radish, then, put the radish in the corresponding basket.

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

// Detect color position

MagicianLite_SetPTPCmd(JUMP_XYZ, 242.79, 178.85, 29.42, 0);

tcs.getRGBC(&red, &green, &blue, &clear); // Get the RGB value of the radish

delay(2000); // Detection time is 2000ms

if(red>green & red>blue){ //Determine if it is red

// Move to the place where the red radish is placed

MagicianLite_SetPTPCmd(JUMP_XYZ, 242.79, 178.85, 29.42, 0);

MagicianLite_SetEndEffectorGripper(true,false);// Put down red radish

}

else{

// Move to the place where the white radish is placed

MagicianLite_SetPTPCmd(JUMP_XYZ, 232.72, 87.26, 25.43, 0);

MagicianLite_SetEndEffectorGripper(true,false); // Put down white radish

}

delay(200);

MagicianLite_SetEndEffectorGripper(false,false);// The gripper is in natural state

Step 7: Sort the radish, count with the variable i, and record the total

number of grabs, which is not greater than 6.

59

60

delay(500);

i=i+1;

Step 8: According to the step analysis, integrate the program.

1

2

3

#include<MagicianLite.h>// Set header file

#include<Wire.h>//Header file

#include"DFRobot_TCS34725.h"//Header file

154

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

DFRobot_TCS34725 tcs = DFRobot_TCS34725

(TCS34725_INTEGRATIONTIME_50MS, TCS34725_GAIN_4X)；

int i=0; // Record the number of grabs

voidsetup(){

MagicianLite_Init(); //Initialize the control board

MagicianLite_SetPTPCommonParams(80,80); //Set the robotic arm movement ratio

//Move robotic arm above the seed position

MagicianLite_SetPTPCmd(JUMP_XYZ, 318.18, -58.45, 76.90, 0);

Serial.begin(115200);

voidloop(){

intclear, R, G, B;

While(i<6){

MagicianLite_SetEndEffectorGripper(true,false) // Open the gripper

//Move to the radish grab position

MagicianLite_SetPTPCmd(JUMP_XYZ, 318.18,-58.45,36.90,0);

MagicianLite_SetEndEffectorGripper(true,true); //Grab the radish

MagicianLite_SetPTPCmd(MOVL_INC, 0,0,40,0); // Move upward

delay(200);

// Detect the color position

MagicianLite_SetPTPCmd(JUMP_XYZ, 242.79, 178.85, 29.42, 0);

tcs.getRGBC(&red, &green, &blue, &clear); // Get the RGB value of the radish

delay(2000); // Detection time is 2000ms

if(red>green & red>blue){ // Judge if it is red

// Move to the place where the red radish is placed

MagicianLite_SetPTPCmd(JUMP_XYZ, 242.79, 178.85, 29.42, 0);

MagicianLite_SetEndEffectorGripper(true,false);// Put down red radish

}

else{

// Move to the place where the white radish is placed

MagicianLite_SetPTPCmd(JUMP_XYZ, 232.72, 87.26, 25.43, 0);

MagicianLite_SetEndEffectorGripper(true,false); // Put down the white radish

}

delay(200);

MagicianLite_SetEndEffectorGripper(false,false);// The gripper is in the natural state

delay(500);

 i=i+1;

}

}

Step 8: Upload and run the program on the equipment.

155

3. Summary

4. Self-Assessment

Check the completed content in the experiment task. Tick (√) the

completed items, and circle (⚪) the uncompleted items.

Assessment Content
Completion

Status

I’ve known the radish grabbing process

I’ve used the instructions to open, close, and place naturally

the gripper

I’ve known the conditions for judging red radishes

I’ve programmed to sort radishes

 Summarize how to control the gripping API

"MagicianLite_SetEndEffectorGripper ()".

(1) The radish grabbing process through the robotic arm is: _________

(2) The reason for placing radishes above the color sensor is: _______

(3) The conditions for judging red radishes are: ___________________
