ww.janitza.com

Modular Power Analyzer

UMG 806

User manual and technical data (from firmware version 2.0.26)

Janitza electronics GmbH Vor dem Polstück 6 35633 Lahnau, Germany Support tel. +49 6441 9642-22 info@janitza.com | www.janitza.com

UMG 806 Modular multifunctional meter for recording energy quantities

Doc. no.: 2.064.005.4.b

Date: 11/2023

The German version is the original edition of the documentation

Subject to technical alterations.

The contents of our documentation have been compiled with great care and reflect the current state of the information available to us. Nonetheless, we wish to point out that updates of this document are not always possible at the same time as technical refinements are implemented in our products. Please see our website under www.janitza.com for the current version.

Please see our website under www.janitza.com for the current version.

TABLE OF CONTENTS

1.	Information on the device and the user manual			
	1. 1	Disclaimer	10	
	1.2	Copyright notice	10	
	1.3	Technical changes.	10	
	1.4	About this user manual.	10	
	1.5	Defective device/disposal	11	
2.	Safety	<i>J</i>	12	
	2. 1	Display of warning notices and safety information	12	
	2. 2	Hazard levels	12	
	2.3	Product safety.	13	
	2. 4	Dangers when handling the device	13	
	2.5	Electrically qualified personnel	14	
	2.6	Warranty in the event of damage	14	
	2. 7	Safety information for handling current transformers and measurement devices with residual current measurement	14	
	2. 8	Handling batteries/accumulators.	15	
3.	Produ	ict description.	16	
	3. 1	Device description	16	
	3. 2	Incoming goods inspection	16	
	3. 3	Intended use	17	
	3. 4	Performance characteristics	18	
	3. 5	EU conformity declaration	18	
	3. 6	Scope of delivery		
	3. 7	Accessories		
	3.8	Transformer	19	
	3. 9	Operating concept.	19	
	3. 10	GridVis® network analysis software.	19	
	3. 11	Overview of the range of functions.	20	
		3. 11. 1 Configuration on the device (via 2 buttons)	20	
		3. 11. 2 Communication	20	
		3. 11. 3 Measured values / functions	20	

4.	Struc	ture of the	e device	22	
	4. 1	1 Front panel and display.			
	4. 2	Front vi	ew / side view	24	
	4. 3	Identific	cation of the device (rating plate).	25	
5.	Moun	ting		26	
	5. 1	. 1 Installation location			
	5. 2		ng orientation and attachment		
6.	Grid s	systems		27	
7.	Instal	lation		28	
	7. 1	Nomina	al voltages	28	
		7. 1. 1	Three-phase 4-conductor network	28	
		7. 1. 2	Three-phase 3-conductor network	29	
	7. 2 Disconnect switch		nect switch	30	
	7. 3	7. 3 Supply voltage			
	7. 4	Voltage	measurement	31	
		7. 4. 1	Overvoltage	31	
		7. 4. 2	Mains frequency	31	
	7. 5	Current	measurement	32	
		7. 5. 1	Measuring variants	33	
		7. 5. 2	Summation current measurement	34	
		7. 5. 3	Ammeter	34	
	7. 6	Residua	al current measurement (RCM)	34	
		7. 6. 1	Current direction of the residual current transformers	35	
		7. 6. 2	Residual current transformer example	35	
		7. 6. 3	Connection example - Residual current monitoring	36	
	7. 7	Temper	ature measurement	37	
	7.8	RS-485	interface	38	
		7. 8. 1	Shielding	39	
		7. 8. 2	Termination resistors/Termination	39	
		7. 8. 3	Bus structure (bus segment)	40	
	7. 9	Digital o	output		

8.	PC co	nnection.		42	
	8. 1	Connect	tion to a PC	42	
9.	Opera	tion and I	button functions	43	
	9. 1	Controls	5	43	
	9. 2	Function	n buttons	43	
	9.3	Operation	on	43	
		9. 3. 1	Display mode.	43	
		9. 3. 2	Configuration mode.	43	
	9. 4	Passwo	rd	43	
	9. 5	Overviev	w of measuring display (display mode)	44	
	9.6	Example	es of basic measuring displays.	45	
	9. 7	Example	es of energy measurement	46	
	9.8	Example	es of power quality	46	
	9. 9	Example	e of time display	46	
	9. 10	Example of active El1 module		46	
	9. 11	1 Example of active ED1 module.			
10	. Config	guration		47	
	10. 1	Configu	ration mode	47	
	10. 2	Configu	ration	47	
		10. 2. 1	Configuring the network system	47	
		10. 2. 2	Configuring the current transformer ratios.	48	
		10. 2. 3	Example: Configuring the current transformer ratios I1-I3	48	
		10. 2. 4	Example: Configuring the current transformer ratios of residual current measurement input I5 (700:1)	49	
		10. 2. 5	Configuring the voltage transformer ratios.	50	
		10. 2. 6	Example: Configuring the voltage transformer ratios	50	
		10. 2. 7	Configuring the RS-485 interface (Modbus)	51	
		10. 2. 8	Configuring the Ethernet interface	51	
	10.3	Paramet	ter list	52	
11.	. Comn	nissioning]	56	
	11. 1	Supply v	voltage	56	
	11. 2	2 Measured voltage			

	11. 3	Frequen	cy measurement	56
	11. 4	Measure	d current	57
	11. 5	Checking	g the phase assignment	57
	11. 6	Checking	g the power measurement	57
	11. 7	Checking	g measurement	57
	11. 8	Checking	g individual power	57
	11. 9	Checking	g summation power	57
12.	Conne	ction exa	mple, UMG 806.	58
13.	Expan	sion mod	ules	59
	13. 1	Module 1	types	59
		13. 1. 1	806-EC1 module	59
		13. 1. 2	806-ED1 module	59
		13. 1. 3	806-El1 module	59
	13. 2	Installing	the modules.	61
	13. 3	Front / s	ide views	62
		13. 3. 1	806-EC1 module	62
		13. 3. 2	806-ED1 module.	62
		13. 3. 3	806-El1 module	63
	13. 4	Connect	ion examples.	63
		13. 4. 1	806-ED1 module	63
		13. 4. 2	806-El1 module	63
	13. 5	Module	detection	64
	13. 6	Display 6	examples.	64
		13. 6. 1	ED1 module.	64
		13. 6. 2	El1 module.	64
	13. 7	EC1 mod	dule	64
		13. 7. 1	Front LEDs and reset button	64
		13. 7. 2	Configuring the Ethernet interface	65
	13. 8		tputs of modules ED1	66
			Automatic alarm control (Example for EI1-RO1)	
		13. 8. 2	Manual control via Modbus addresses	67
		13. 8. 3	Table "Parameters of the alarm elements" - addresses (412, 422, 432, 442)	68
		13. 8. 4	Alarm elements and units of the alarm limit values.	69

14. EC1 n	nodule homepage	70	
14. 1	LOG IN	70	
14. 2	Overview		
14. 3	Home	72	
14. 4	Measured value display	72	
14. 5	Settings		
	14. 5. 1 TCP/IP	75	
	14. 5. 2 MODBUS	76	
	14. 5. 3 Current transformer (CT) / Voltage transformer (VT) ratios	77	
	14. 5. 4 Password	78	
	14. 5. 5 Firmware Update	79	
14. 6	General information	80	
15. Servic	ce and maintenance	82	
15. 1	Repair and calibration.	82	
15. 2	Front panel foil and display	82	
15. 3	Service	82	
15. 4	Device adjustment	82	
15. 5	Clock/Battery		
15. 6	Procedure in the event of a malfunction.	84	
16. Techn	nical data	86	
16. 1	Technical data, UMG 806	86	
16. 2	Performance characteristics of functions	90	
16. 3	Technical data of the modules	91	

1. Information on the device and the user manual

1.1 Disclaimer

Compliance with the informational products for the device is a prerequisite for safe operation and attaining the stated performance characteristics and product features.

Janitza electronics GmbH assumes no liability for bodily injury, material damage or financial losses which result from disregard of the informational products.

Ensure that your informational products are readily accessible in a legible form.

1.2 Copyright notice

© 2020 - Janitza electronics GmbH - Lahnau. All rights reserved.

Any reproduction, processing, distribution or other use of this informational product, in whole or in part, is prohibited.

All trademarks and the rights arising from them are the property of the respective owners of these rights.

1.3 Technical changes

- · Make sure that your device matches the user manual.
- This user manual applies to the UMG 806. Separate validities and distinctions are marked.
- · First read and understand the documents associated with the product.
- Keep the documents associated with the product available for the entire service life and pass them on to any possible subsequent users.
- · Find out about device revisions and the associated modifications of the documentation associated with your product at www.janitza.com.

1.4 About this user manual

If you have questions, suggestions or ideas for improvement of the user manual, please let us know via email at: info@ianitza.com.

i INFORMATION

This user manual describes the UMG 806 and provides information on the operation of the device. Also consult the additional documentation relevant for this user manual, such as:

- · Installation instructions.
- · Data sheet.
- · Safety information.
- · As applicable, documents for expansion modules.
- Online help for the network visualization software GridVis[®].

1.5 Defective device/disposal

Before sending **defective devices**, **modules or components** back to the manufacturer for testing:

- · Contact the manufacturer's Support department.
- · Send devices, modules or components complete with all accessories.
- · When doing so, please bear the terms for transportation in mind.

(i) INFORMATION

Please return defective or damaged devices to Janitza electronics GmbH in accordance with the shipping instructions for air or road freight (complete with accessories).

Observe special regulations for devices with built-in batteries or rechargeable batteries!

Do not attempt to open or repair the device (the component) on your own because otherwise all warranty claims become invalid!

For the **Disposal** of the device please observe national regulations! Dispose of individual parts, as applicable, depending on their composition and existing country-specific regulations, e.g. as

- · Electronic waste,
- · Batteries and rechargeable batteries.
- · Plastics.
- · Metals.

Engage a certified disposal company to handle scrapping as needed.

Information on service and maintenance of your device can be found in chapter "15. Service and maintenance" on page 82.

2. Safety

The chapter on Safety contains information which must be observed to ensure your personal safety and avoid material damage.

2.1 Display of warning notices and safety information

The warning notices shown below

- · are found throughout all of the documentation,
- · can be found on the devices themselves.
- · indicate potential risks and hazards,
- · underscore aspects of the information provided that clarifies or simplifies procedures.

The additional symbol on the device itself indicates an electrical danger that can result in serious injuries or death.

This general warning symbol draws attention to a possible risk of injury. Be certain to observe all of the information listed under this symbol in order to avoid possible injury or even death.

2.2 Hazard levels

Warning and safety information is marked by a warning symbol, and the hazard levels are shown as follows, depending on the degree of hazard:

A DANGER

Warns of an imminent danger which, if not avoided, results in serious or fatal injury.

A WARNING

Warns of a potentially hazardous situation which, if not avoided, could result in serious injury or death.

A CAUTION

Warns of an immediately hazardous situation which, if not avoided, can result in minor or moderate injury.

ATTENTION

Warns of an immediately hazardous situation which, if not avoided, can result in material or environmental damage.

(i) INFORMATION

Indicates procedures in which there is **no** hazard of personal injury or material damage.

2.3 **Product safety**

The device reflects current engineering practice and accepted safety standards, but hazards can arise nonetheless.

Observe the safety regulations and warning notices. If notices are disregarded, this can lead to personal injury and/or damage to the product.

Every type of tampering with or use of this device,

- · which goes beyond the mechanical, electrical or other operating limits can lead to personal injury and/or damage to the product;
- · constitutes "misuse" and/or "negligence" under the product's warranty and thus voids the warranty for any possible resulting damage.

Read and understand the user manual before installing, operating, maintaining and using the device.

Only operate the device when it is in perfect condition and in compliance with this user manual and the associated, included documents. Send defective devices back to the manufacturer in compliance with proper transport conditions. Retain the user manual throughout the service life of the device and keep it at hand for consultation.

When using the device, also observe the legal and safety regulations for your system that are applicable for the respective use case.

MARNING

Disregarding the connection conditions of the Janitza measurement devices or their components can lead to injuries and even death or to material damage!

- Do not use Janitza measurement devices or components for critical switching, control or protection applications where the safety of persons and property depends on this function.
- Do not carry out switching operations with the Janitza measurement devices or components without prior inspection by your plant manager with specialist knowledge! In particular, the safety of persons, material assets and the applicable standards must be taken into account!

When operating electric devices, it is unavoidable for certain parts of these devices to conduct hazardous voltage. Consequently, severe bodily injury or material damage can occur if they are not handled properly.

Therefore, when handling our devices, always observe the following:

- · do not exceed the limit values specified in the user manual and on the rating plate! This must also be observed during testing and commissionina!
- · Safety and warning notices in all documents that belong to the devices!

WARNING

Risk of injury due to electrical voltage!

Severe bodily injury or death can result! Therefore please abide by the following:

- Switch off your installation before commencing work! Secure it against being switched on! Check to be sure it is de-energized! Ground and short circuit! Cover or block off adjacent live parts!
- During operation and troubleshooting (especially for DIN rail devices), check your system for dangerous voltages and switch these off if necessary!
- Wear protective clothing and protective equipment in accordance with applicable guidelines when working on electrical sys-
- Before making connections to the device/the component, ground the device by means of the ground wire connection, if present.
- Do not touching bare or stripped leads that are energized! Equip stranded conductors with wire ferrules!
- Hazardous voltages can be present in all circuitry parts that are connected to the power supply.
- Protect wires, cables and devices with a suitable line circuit breaker/fuse!
- Never switch off, remove or tamper with safety devices!
- There can still be hazardous voltages present in the device or in the component even after it has been disconnected from the supply voltage (capacitor storage).
- Do not operate equipment with current transformer circuits when open.
- Only connect screw terminals with the same number of poles and design!
- Do not exceed the limit values specified in the user manual and on the rating plate! This must also be observed during testing and commissioning.
- Take note of the safety and warning notices in the documents that belong to the device!

2.5 Electrically qualified personnel

To avoid bodily injury and material damage, only electrically qualified personnel are permitted to work on the devices and their components, modules, assemblies, systems and current circuits who have knowledge of:

- · the national and international accident prevention regulations,
- · safety technology standards,
- · installation, commissioning, operation, disconnection, grounding and marking of electrical equipment,
- · the requirements concerning personal protective equipment.

Electrically qualified persons within the scope of the technical safety information of all documents associated with the device and its components are persons who can furnish proof of qualification as an electrically skilled person.

WARNING

Warning against unauthorized manipulation or improper use of the device or its components! Opening, dismantling or unauthorized manipulation of the device and its components which goes beyond the mechanical, electrical or other operating limits indicated can lead to material damage or injury, up to and including death.

- · Only electrically qualified personnel are permitted to work on the devices and their components, assemblies, systems and current circuits.
- Always use your device or component only in the manner described in the associated documentation.
- If there is discernible damage, send the device or the component back to the manufacturer!

2.6 Warranty in the event of damage

Any unauthorized tampering with or use of the device constitutes "misuse" and/or "negligence" under the product's warranty and thus voids the warranty of any possible resulting damage. In this regard, please take note of section "3.3 Intended use" on page 17.

2.7 Safety information for handling current transformers and measurement devices with residual current measurement

WARNING

Risk of injury due to large currents and high electrical voltage on the current transformers! Current transformers operated while open on the secondary side (high voltage peaks pose a hazard when touched) can result in severe bodily injury or

- Avoid operating the current transformers while open; short circuit the unloaded trans-
- Before interrupting the current supply, short circuit the secondary connections of the current transformers. Switch any test switches that automatically short circuit the secondary lines of the current transformers to the "Test" status (Check the test switch/short circuiting connection beforehand)!
- Only use current transformers with basic insulation to IEC 61010-1:2010!
- Caution, even current transformers rated as safe for open operation can pose a hazard when touched during operation while open!
- Make sure that screw terminals for the current transformer connection on the device are adequately tightened!
- Comply with the information and provisions in the documentation of your current transformers!

CAUTION

Risk of injury or damage to the meter due to high measurement currents at the connections of the current transformers!

High measurement currents can cause temperatures of up to 80 °C (176 °F) on the connections of the current transformers

- Use wiring that is designed for an operating temperature of at least 80 °C (176 °F)!
- The current transformers can be hot even after the power supply has been switched off. Allow the connections of the current transformers and the connecting cables to cool down before touching them!

WARNING

Risk of injury or damage to the meter due to improper use!

Meters with residual current measurement can trigger warning pulses if limit values are exceeded, and these are used exclusively for monitoring residual currents or failure monitoring. Use of the warning pulses as a stand-alone protective device against electrical shock can lead to injury and even death!

 Do not use devices with residual current measurement as a stand-alone protective device. Employ suitable protective devices for your system!

CAUTION

Risk of injury or damage to the meter/your system due to short circuit!

Inadequate insulation of the operating equipment at the residual current measuring input with respect to the supply circuits can cause voltages at the measuring input which represent a hazard when touched or damage to your device or system.

- Ensure reinforced or double insulation with respect to the supply circuits!
- Ensure galvanic isolation of the residual current measuring inputs from each other!

2.8 Handling batteries/accumulators

The following apply for the battery used in the device:

CAUTION

Risk of injury due to fire or burns!

The battery used in the device may cause fire or burns if used improperly.

· In case of damage, return devices with a soldered battery to the manufacturer, observing proper transport conditions!

3. Product description

3.1 Device description

The device is a multifunctional network analyzer and is suitable for:

- Measurements and calculations of electrical quantities such as voltage, current, power, energy, harmonics current in building installations, on distribution boards, circuit breakers and busbar trunking systems.
- · An expansion of the range of functions using optional modules (maximum of 3 different modules).
- Measurements of voltages and currents from the same network.
- Measurements in low voltage networks (3-phase 4-conductor systems) with rated voltages up to L-L 400 V and L-N 230 V (overvoltage category 300 V CAT III).
- Measurements in medium and high voltage networks via current and voltage transformers.
- · Current measurement via
- External ../1 A or ../5 A current transformers.
- Channel I5 (residual current measurement).
- · Installation in stationary switch cabinets or small distribution boards, in any mounting orientation.
- The measurement of residual currents (Residual Current Monitoring, RCM) of an electrical system. The measurement device is not a protective device against electric shock!
- · Use in industrial areas.

Measurement results are displayed by the measurement device and can be read and processed via interfaces.

A CAUTION

Malfunction and damage of the device or risk of injury due to improper connection.

Improperly connected devices can deliver incorrect measured values, damage the device or pose a risk of injury to persons.

Observe the following:

- That measured voltages and currents come from the same network.
- Do not use the device for measuring direct current / direct voltage!
- Ground current-conducting switchboards!

3.2 Incoming goods inspection

Safe and trouble-free operation of this device and its components presupposes proper transport, proper storage, set-up and assembly as well as operation and maintenance in addition to compliance with the safety information and warning notices.

Exercise due caution when unpacking and packing the device, do not use force and only use suitable tools.

Before installing the device, please check the following:

- Its flawless mechanical condition by visual inspection.
- · The scope of delivery for completeness.

If it can be assumed that safe operation of the device is no longer possible:

- Disconnect the device from the mains immediately!
- Secure the device against being switched on again!

It can be assumed that safe operation is no longer possible if the device, for example:

- · Has visible damage.
- No longer functions despite an intact power supply.
- Was subjected to extended periods of unfavorable conditions (e.g. storage outside of the permissible climate thresholds without adjustment to the room climate, condensation, etc.) or transport stress (e.g. falling from an elevated position, even without visible external damage, etc.).

3.3 Intended use

The device is:

- · Only for use in the industrial sector.
- · Intended for installation in switchboard cabinets and small distribution boards.
- Not intended for installation in vehicles! Use of the device in non-stationary equipment constitutes an exceptional environmental condition and is only permissible by special agreement.
- Not intended for installation in environments with harmful oils, acids, gases, vapors, dusts, radiation, etc.
- · Designed as an interior meter.

Safe and trouble-free operation of the device requires proper transport, storage, assembly, installation, operation and maintenance.

3.4 Performance characteristics

General

- DIN rail measurement device with the dimensions 90 x 90 x 64 mm
- · Mounting on DIN rail 35 mm
- Modularly expandable with the components 806-EC1, 806-ED1 and 806-EI1
- · LCD display with backlight
- · Operation via 2 buttons
- · Password protection
- · 4 voltage and 4 current measurement inputs, 1 residual current measurement input
- · RS-485 interface (Modbus RTU)
- · 1 temperature measuring input
- · 1 pulse output (active energy)

Measurement uncertainty

- · Active energy, measurement uncertainty class 0.5S S for ../5 A transformers.
- · Active energy, measurement uncertainty class 1 for ../1 A transformers.
- · Reactive energy, class 2

Measurement

- · Measurement in TN, TT and IT networks
- Measurement in networks with nominal voltages up to
 - L-L 400 V and L-N 230 V (300 V CAT III)
- · Measuring range, current 0.005 .. 6 Aeff
- · True effective value measurement (TRMS)
- Continuous sampling of the voltage and current measurement inputs
- Frequency range of the fundamental oscillation 45 Hz .. 65 Hz
- Measurements of harmonics current, 1st to 31st for U and I
- · Residual current and temperature measurement

3.5 EU conformity declaration

Please see the EU declaration of conformity posted at www.janitza.com for the laws, standards and directives applied by Janitza electronics GmbH for the devices. The CE conformity marking requirements for the device arise from the EU conformity declaration and the laws, standards and directives mentioned therein.

3.6 Scope of delivery

Quan- tity	Part. no.	Designation
1	14.02.025	UMG 806 (basic device)
1	33.03.382	Installation instructions DE/EN
1	33.03.342	Supplement "Safety Information"

Tab. Scope of delivery

3.7 Accessories

Quan- tity	Part. no.	Designation
1	14.02.016	Module 806-EC1 Ethernet communication module
1	14.02.020	Module 806-El1 Analog input module
1	14.02.019	Module 806-ED1 Digital input module

Tab. Accessories

(i) INFORMATION

- · All screw terminals of the modules included in the scope of delivery are attached to the device.
- All supplied options and design variants are described on the delivery note.

3.8 Transformer

Please note! It is not permitted to use the outputs of Janitza measurement devices and components for switching protective devices or protective relays! Use **only** "Current transformers for measuring purposes" for Janitza measurement devices and Janitza components!

"Transformers", unlike "protection transformers", go into saturation at high current peaks. "Protection transformers" do not have this saturation behavior and can therefore significantly exceed the rated values in the secondary circuit. This can overload the current measurement inputs of the measurement devices!

Furthermore, please note that Janitza measurement devices and components are **not** to be used for critical switching, control or protection applications (protective relays)!

Observe the safety and warning information in the chapters "7. Installation" on page 28 and "2.3 Product safety" on page 13!

3.9 Operating concept

The following options are offered for operating, configuring or reading the meter:

• 2 function buttons with display for configuration and acquisition of data.

A standard Modbus address list is available at www.janitza.com.

This user manual describes how to operate the meter using 2 buttons. The GridVis® software has "online help" and e-learning instructions.

3.10 GridVis® network analysis software

Use the GridVis® network analysis software available at www.janitza.com to read out data for analysis. To do so, connect a PC to your measurement device via the Ethernet interface.

Performance characteristics of the GridVis® software

- · Read out the device.
- · Graphic display of measured values.
- · Analysis of read data.
- · Create reports.

Connections to the PC

Connections for communication between the PC and the measurement device can be found in chap. "8.1 Connection to a PC" on page 42.

3.11 Overview of the range of functions

3.11.1 Configuration on the device (via 2 buttons)

- · Password protection
- · Module enhancements
- · Current transformer primary / secondary
- · Voltage transformer primary / secondary
- · Fieldbus parameters
- · Digital output
- · Time, LCD standby
- · Automatic change of the measuring displays

3.11.2 Communication

- · One RS-485 interface for communication with Modbus/RTU devices.
- · One Ethernet interface with the 806-EC1 module (available optionally).

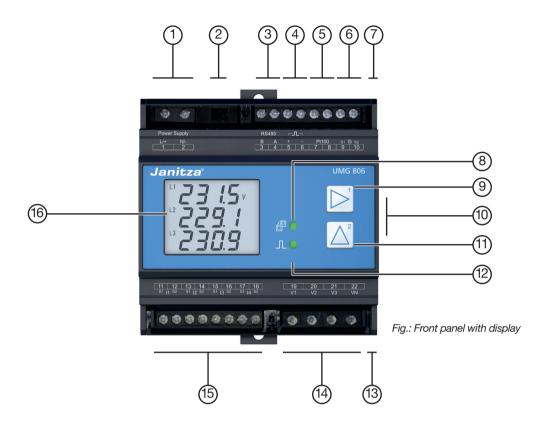
3.11.3 Measured values / functions

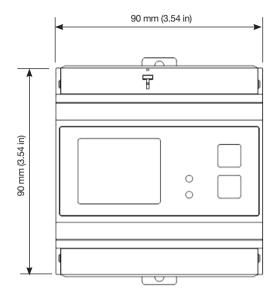
Measured values / functions	
Voltage, current	✓
Neutral current	✓
Phase measured values, such as active / reactive / apparent power	✓
Phase and total power factor	✓
Active energy	✓
Active energy (applied, delivered)	✓
Apparent energy	✓
Reactive energy	✓
Reactive energy (ind., cap.)	✓
Distortion factor THD I / THD U	✓
Harmonics	1st - 31st
Phase position	✓
Unbalance	✓
Power factor	✓
Data recording of the min./max. values	✓

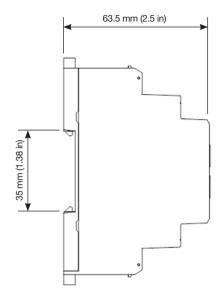
Table Overview of the measured values recorded by the device.

4. Structure of the device

4.1 Front panel and display






Fig.: Device front with screw terminal covers and display - 3D

Item	Function/Designation
1	Supply voltage connection
2	Setup button
3	RS-485 interface
4	Digital output (active energy)
5	Temperature measurement input (PT100)
6	Residual current measurement input I5
7	Module locking
8	LED (communication)
9	Button 1
10	Module communication interface
11	Button 2
12	LED (pulse activity)
13	Module locking
14	Voltage measurement inputs V ₁ , V ₂ , V ₃ and V _N
15	Current measurement inputs I1 to I4
16	Device display
17	Cover plate for screw terminals (1) to (6)
18	Cover for the screw terminals (14) and (15)

Tab.: Device structure - Connections and controls

4.2 Front view / side view

4.3 Identification of the device (rating plate)

Item	Designation	Description
1	Designation of origin	Country of origin of the manufacturer.
2	Operational data	Supply voltage and maximum power consumption.
3	Device type	Device designation.
4	DataMatrix code	Coded manufacturer data.
5	Part number	Manufacturer's part number.
6	Logo/Internet address of the manufacturer	Logo of the device manufacturer.
7	CE conformity marking	See "EU Declaration of Conformity".
8	Barcode	Code for unique product identification.
9	Type/serial number	Number for identification of the device.

Tab.: Device identification, rating plate

5. Mounting

5.1 Installation location

A DANGER

Danger of electric shock!

Electric shocks lead to serious injuries, including death.

- · Disconnect your system from the power supply before mounting and connecting the device!
- · Secure it against being switched on!
- · Check to be sure it is de-energized!
- · Ground and short circuit!
- · Cover or block off adjacent live parts!
- The installation must only be carried out by qualified personnel with electrical training!

Mount the meter in switch cabinets or small distribution boards according to DIN 43880 on a 35 mm mounting rail (for type, see chapter "16. Technical data" on page 86) according to DIN EN 60715. The mounting orientation is arbitrary.

5.2 Mounting orientation and attachment Proceed as follows to mount the UMG 806 on the mounting rail:

Push in the bottom bolt of the clamping mechanism.

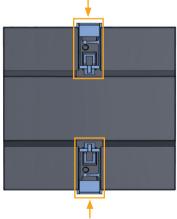


Fig. Bottom of the device with bottom

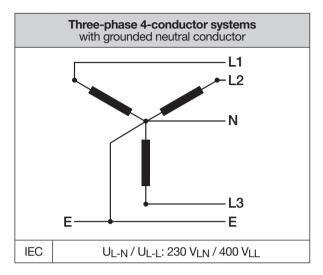
Place your measurement device on the mounting rail. Press the device onto the rail until the bottom bolts engage.

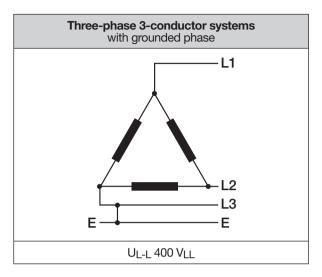


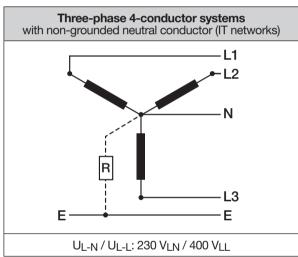
Fig. Mounting on mounting rail

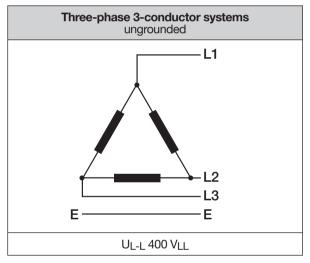
Fig. Device on mounting rail to DIN EN 60715

ATTENTION


Material damage due to disregard of the installation instructions!


Disregard of the installation instructions can damage or destroy your device.


• Provide adequate air circulation in your installation environment and, as needed, cooling when the temperatures are high.


Grid systems 6.

Suitable grid systems and maximum rated voltages according to DIN EN 61010-1/A1:

Range of application of the meter:

- · 3 and 4-conductor networks (TN, TT and IT net-
- · Residential and industrial areas.

MARNING

Risk of injury due to electrical voltage!

Rated surge voltages above the permitted overvoltage category can damage the insulation in the device. This impairs the safety of the device. This can result in serious injury or death.

- · Only use the device in environments which comply with the permissible rated surge voltage.
- Observe the limit values specified in the user manual and on the rating plate.

7. Installation

Use the meter for voltage measurement in TN, TT and IT networks with the approved overvoltage category.

MARNING.

Risk of injury due to electrical voltage!

Do not short-circuit secondary connections of voltage transformers! This can result in serious injury or death.

- Connect voltage transformers according to their documentation!
- Check your installation!

WARNING

Disregard of the connection conditions of the transformers to Janitza measurement devices or their components can lead to injuries or even death or to material damage!

- · Do not use Janitza measurement devices or components for critical switching, control or protection applications (protective relays)! It is not permitted to use measured values or measurement device outputs for critical applications!
- For Janitza measurement devices and their components use **only"Transformers for measurement purposes"** which are suitable for the energy monitoring of your system. Do not use "Transformers for protection purposes"!
- Observe the information, regulations and limit values in the use information on "Transformers for measuring purposes", specifically during testing and commissioning of the Janitza measurement device, the Janitza component and your system.

7.1 Nominal voltages

7.1.1 Three-phase 4-conductor network

The device can be used in three-phase 4-conductor systems (TN, TT network) (50 Hz, 60 Hz) with grounded neutral conductor. The components of the electrical system are grounded.

Suitable mains and nominal voltages for your meter:

U_{L-N} / U_{L-L}	
66 V / 115 V	
120 V / 208 V	
127 V / 220 V	
220 V / 380 V	
230 V / 400 V	

Tab.: Nominal network voltages suitable for measuring inputs acc. to EN 60664-1:2003

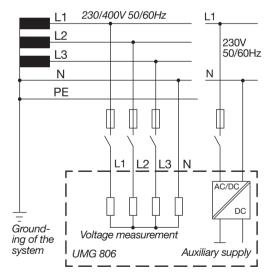


Fig. Schematic diagram, UMG 806 in a TN network

7.1.2 Three-phase 3-conductor network

The device can be used in ungrounded three-phase 3-conductor systems (IT network).

- · In an IT system, the neutral point of the voltage generator is not grounded.
- · The components of the electrical system are grounded.
- · Grounding via a high-ohmic impedance is permitted.

IT networks are only permitted in certain systems with their own transformer or generator.

Suitable mains and nominal voltages for your meter:

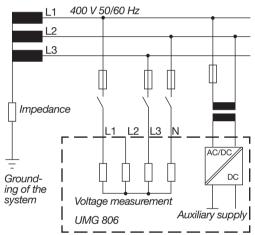


Fig. Schematic diagram, UMG 806 in an IT network without N.

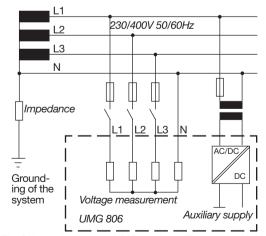


Fig. Schematic diagram, UMG 806 in an IT network with N.

Suitable mains and nominal voltages for your meter:

U _{L-L}	U _{L-L}
66 V	240 V
115 V	260 V
120 V	277 V
127 V	347 V
200 V	380 V
230 V	400 V

Tab.: Nominal network voltages suitable for measuring inputs acc. to EN 60664-1:2003

7.2 Disconnect switch

When installing in a building, provide a suitable disconnect switch for the supply voltage in order to disconnect your system and thus your device from the supply of power.

- · Install the disconnect switch of your system or device in such a way that it is easily accessible by the user.
- · Mark the switch as an isolation device for your system or device.

7.3 Supply voltage

WARNING

Risk of injury due to electrical voltage!

Severe bodily injury or death can result from:

- · Touching bare or stripped leads that are energized.
- Device inputs that pose a hazard when touched.
- Disconnect your system from the power supply before mounting and connecting the device!
- Secure it against being switched on!
- Check to be sure it is de-energized!
- · Ground and short circuit!
- · Cover or block off adjacent live parts!

A supply voltage is required to operate the device. The type and level of the supply voltage for your device can be found on the rating plate.

The supply voltage is connected via the terminals on the front of the device.

Before applying the supply voltage, make sure that the voltage and frequency match the specifications on the rating plate.

After connecting the supply voltage, the display becomes active.

(i) INFORMATION

Note that the device requires an initialization phase (boot time) at startup!

If no display appears, check:

- · The connection of your device.
- · The supply voltage.

(i) INFORMATION

The fuse is a line protection - it is not a device protection!

ATTENTION

Material damage due to disregard of the connection instructions!

Disregard of the connection instructions or exceeding the permissible voltage range can damage or destroy your device.

Before connecting the device to the supply voltage, please note:

- · Voltage and frequency must correspond to the specifications on the rating plate!
- Comply with the limit values (see "Technical data") as described!
- In the building installation, secure the supply voltage with a UL/IEC listed line circuit breaker/ fuse!
- Observe the following for the isolation device:
 - Install it close to the device and easily accessible for the user.
 - Mark it for the respective device.
- Do not tap the supply voltage from the voltage transformers.
- Provide a fuse for the neutral conductor if the neutral conductor terminal of the source is not grounded.

Fig. Supply voltage connection.

7.4 Voltage measurement

The device has 4 voltage measurement inputs (V1,V2, V3 and VN) and is suitable for various connection variants.

A WARNING

Risk of injury or damage to the device due to electrical voltage and improper connection!

Disregard of the conditions for the connections of the voltage and current measurement inputs may damage the device or cause serious injury or death. Connecting the voltage lines to the current measurement inputs also poses a fire hazard! Therefore, please abide by the following:

- Switch off your installation before commencing work! Secure it against being switched on! Check to be sure it is de-energized! Ground and short circuit! Cover or block off adjacent live parts!
- Check the condition of the connections, including the cabling, especially the connection of the voltage and current measurement.
- · Do not apply a DC voltage
- to the voltage measurement inputs.
- Equip the voltage measurement inputs with a suitable, marked fuse and isolation device (alternatively: line circuit breaker) located nearby.
- The voltage measurement inputs are dangerous to touch.
- Connect voltages that exceed the permissible nominal network voltages via a voltage transformer.
- Measured voltages and currents must originate from the same network.

(i) INFORMATION

As an alternative to the fuse and isolation device, you can use a line circuit breaker.

Fig. Connection example for "voltage measurement".

7.4.1 Overvoltage

The voltage measurement inputs are designed for measurements in low-voltage networks in which nominal voltages occur as described in the chapter "Technical data".

Information on the rated surge voltages and overvoltage categories can also be found in the technical data.

7.4.2 Mains frequency

The device:

- Requires the mains frequency for the measurement and calculation of measured values.
- · Is suitable for measurement in networks in which the fundamental oscillation of the voltage is in the range from 45 Hz to 65 Hz.
- Requires a voltage at the voltage measurement input for the automatic determination of the mains frequency
- Calculates the sampling frequency of the voltage and current measurement inputs from the mains frequency.

(i) INFORMATION

The device only determines measured values if there is a voltage at the voltage measurement input.

Use line protection with IEC/UL approval (1 - 10 A, tripping characteristic B) as an overcurrent protective device for the voltage measurements.

7.5 **Current measurement**

The device:

- · Measures current exclusively via current transformers.
- · Does not measure DC currents.
- Permits the connection of current transformers. with a transformer ratio of ../1 A and ../5 A for current measurement inputs I1 to I4 (terminals 11-18).
- · Has a current transformer ratio of 5/5A (I1 to I4) as the default setting.
- · Permits a residual current measurement via current measurement input I5 (terminals 9/10)

The current transformers require a basic insulation according to IEC 61010-1:2010 for the nominal voltage of the circuit.

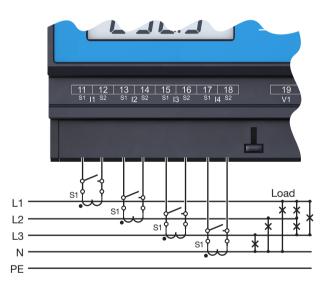


Fig. Connection example for "current measurement".

ATTENTION

Material damage due to disregard of the connection instructions during current measurement.

Failure to comply with the connection requirements of your device can result in the permissible current measurement range being exceeded. This can lead to damage or destruction of or fire in your device or system and thus to material damage!

- Use current transformers for current measurement! The device only allows current measurement via current transformers!
- Observe the connection conditions for the current measurement inputs of your device and the current transformers!

WARNING

Risk of injury due to high currents and high electrical voltages!

Severe bodily injury or death can result from:

- Touching bare or stripped leads that are ener-
- Dangerous live current measurement inputs of the device and at the current transformers.

Therefore, please note for your system:

- Disconnect the supply of power before starting work!
- Secure it against being switched on!
- Check to be sure it is de-energized!
- Ground and short circuit! Use the ground connection points with the ground symbol for grounding!
- Cover or block off adjacent live parts!

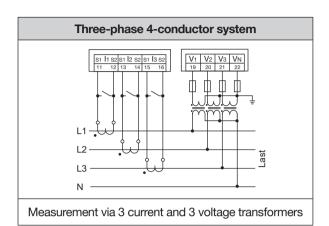
WARNING

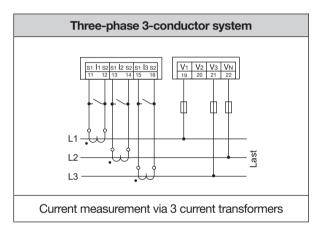
Risk of injury due to electrical voltage at current transformers!

Current transformers which are operated exposed on the secondary side can carry hazardous live high voltage peaks which can lead to serious bodily injury or death.

Therefore please abide by the following:

- Switch off your installation before commencing work! Secure it against being switched on! Check to be sure it is de-energized! Ground and short circuit! Cover or block off adjacent live parts!
- Avoid exposed operation of the current transformers.
- Short-circuit unloaded current transformers.
- Before interrupting the current supply, short circuit the secondary connections of the current transformers.
- If there is a test switch which automatically short-circuits the secondary current transformer lines, it is sufficient to set it to the "Test" position, provided that the short-circuiters have been checked beforehand.
- Only use current transformers with basic insulation according to IEC 61010-1:2010.
- Even current transformers rated as safe for exposed operation are dangerous to touch if they are operated exposed.




WARNING

Risk of injury or damage to the device due to electrical voltage and improper connection! High measuring currents can cause temperatures of up to 80 °C (176 °F) at the connections. Use wiring designed for an operating temperature of up to 80 °C (176 °F)!

7.5.1 Measuring variants

Three-phase 4-conductor system Si I1 sels 12 sels 15 sel 11 12 13 14 15 16 V1 V2 V3 VN 19 20 21 22 L1 N Current measurement via 3 current transformers

A WARNING

Risk of injury or damage and fire hazard to the device due to improper connection!

Disregard of the conditions for the connections, e.g. connecting the voltage lines to the current measurement inputs, may damage the device or cause serious injury or death. Connecting the voltage lines to the current measurement inputs also poses a fire hazard!

Therefore, please abide by the following before start-up:

Check the condition of the connections, including the cabling, especially the connection of the voltage and current measurement.

(i) INFORMATION

Current transformer ratios can be configured conveniently via the device menu.

For information on programming the current transformer ratios, refer to the chapter "10.2.2 Configuring the current transformer ratios" on page 48.

7.5.2 Summation current measurement

For a summation current measurement via two current transformers, first set their total ratio on the device (for setting the current transformer ratios, see section "10.2.2 Configuring the current transformer ratios" on page 48).

Example:

The current is measured via two current transformers. Both current transformers have a ratio of 1000/5 A. The summation measurement is carried out with a summation current transformer of 5+5/5 A.

Set the device as follows:

Primary current: 1000 A + 1000 A = 2000 A

Secondary current: 5A

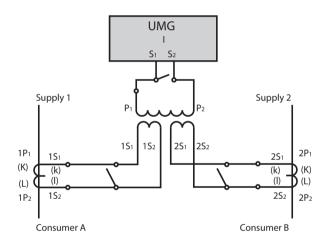


Fig. Example for current measurement via a summation current transformer.

7.5.3 Ammeter

For a current measurement with an additional ammeter, connect the ammeter in series to the UMG:

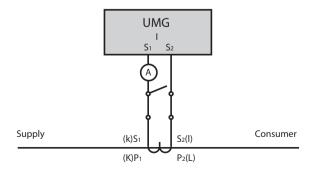


Fig. Example circuit diagram with ammeter in series connection

7.6 Residual current measurement (RCM)

The measurement device is suitable as a residual current monitoring device (RCM) for monitoring alternating currents and pulsating direct currents.

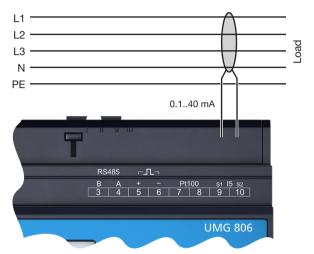


Fig. Connection example "Variant, residual current measurement" via current transformer (Type A).

Residual current transformers with a nominal current as given in the section "Technical data" are suitable for the meter's residual current measurement function.

Monitoring the residual currents of an electrical system via the residual current input of the device (terminal 9/10, I5), allows an alarm management system to be set up using the GridVis® software. This allows the system operator to be alerted before a protective device is triggered.

The measurements in medium and high voltage networks are made via current and voltage transformers.

(i) INFORMATION

The meter is not an independent protective device against electric shock!

(i) INFORMATION

Suitable for recording residual currents > 100 mA in combination with Janitza residual current transformers.

7.6.1 Current direction of the residual current transformers

For residual current measurement with current transformers in AC operation at the measuring inputs, the device does not distinguish between the current directions. Incorrect connection of the residual current transformers in AC operation does not require subsequent rewiring.

(i) INFORMATION

The meter does not distinguish between the current directions of the residual currents.

The residual currents of the grid side or load side are **not** directionally sensitive.

A WARNING

Risk of injury due to large currents and high electrical voltage on the current transformers! Current transformers operated while open on the secondary side (high voltage peaks pose a hazard when touched) can result in severe bodily injury or death

- Avoid operating the current transformers while open; short circuit the unloaded transformers!
- Before interrupting the current supply, short circuit the secondary connections of the current transformers. Switch any test switches that automatically short circuit the secondary lines of the current transformers to the "Test" status (Check the test switch/short circuiting connection beforehand)!
- Only use current transformers with basic insulation to IEC 61010-1:2010!
- Caution, even current transformers rated as safe for open operation can pose a hazard when touched during operation while open!
- Make sure that screw terminals for the current transformer connection on the device are adequately tightened!
- Comply with the information and provisions in the documentation of your current transformers!
- Ground connections present on the secondary windings of the current transformers must be connected to ground!
- Observe the general safety information for handling current transformers and devices with residual current measurement.

7.6.2 Residual current transformer example

Operating equipment must have reinforced or double insulation from supply circuits!

Example:

A residual current transformer is used to measure on insulated mains wiring in a 300 V CAT III network.

Solution:

Provide basic insulation for 300 V CAT III for the insulation of the network wiring and the insulation of the residual current transformer. This corresponds to a test voltage of 1500 V AC (1 min. duration) for the insulated network wiring and a test voltage of 1500 V AC (1 min. duration) for the residual current transformer.

A CAUTION

Risk of injury or damage to the meter/your system due to short circuit!

Inadequate insulation of the operating equipment at the residual current measuring input with respect to the supply circuits can cause voltages at the measuring input which represent a hazard when touched or damage to your device or system.

• Ensure reinforced or double insulation with respect to the supply circuits.

Risk of injury or damage to the device due to electrical voltage and improper connection! High measuring currents can cause temperatures of up to 80 °C (176 °F) at the connections.

Use wiring designed for an operating temperature of up to 80 °C (176 °F)!

7.6.3 Connection example - Residual current monitoring

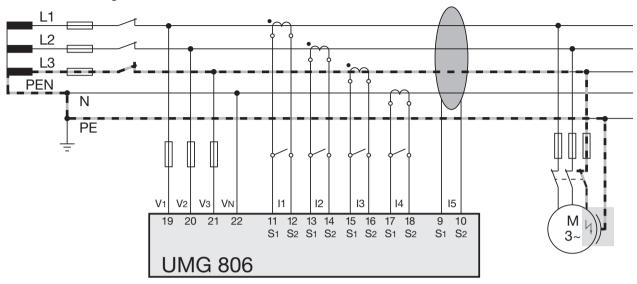


Fig. Connection example, UMG 806 with residual current monitoring

7.7 Temperature measurement

The UMG 806 has a temperature measurement input. The temperature is measured via terminals 7 and 8 ("Pt100").

The measured values of the connections declared as temperature inputs are obtained by determining the average value from accumulated resistance values. The meter calculates the temperature value from the average value.

The device supports the temperature sensor

· PT100

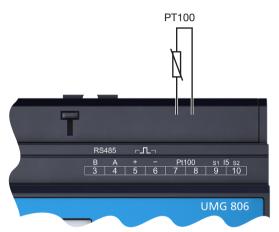


Fig. Connection example for "temperature measurement".

ATTENTION

Damage to the meter and/or your system due to a short circuit!

Inadequate insulation of the operating equipment (e.g. the temperature sensor) at the temperature measuring inputs with respect to the supply circuits can cause damage to your meter and/or your system.

- Ensure a reinforced or double insulation of your operating equipment with respect to the supply circuits!
- Use shielded lines to connect the temperature sensor!
- · Do not exceed a total load of 0.35 k Ω (temperature sensor and cable)!

Example of temperature sensor:

A temperature sensor is to measure near uninsulated power lines in a 300 V CAT III network.

Solution:

Use reinforced or doubled insulation for the temperature sensor for the 300V CAT III network! This corresponds to a test voltage of 3000 V AC (1 min. duration) for the temperature sensor.

7.8 RS-485 interface

The serial RS-485 interface of this device is designed as a 2-pole screw contact and communicates using the Modbus RTU protocol.

For the connection capacity of the terminals, see chapter "16. Technical data" on page 86.

Examples

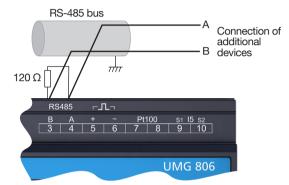


Fig. Example: RS-485 interface of the UMG 806 (at the beginning of a bus topology)

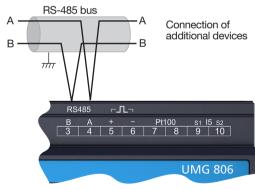


Illustration example: RS-485 interface of the UMG 806 (in the middle of a bus topology)

(i) INFORMATION

- The device does not contain an integrated termination resistor. A termination resistor must be set for termination for a UMG 806 at the beginning or end of a bus segment, (see section "Termination resistors / Termination").
- CAT cables are not suitable for bus wiring! **Recommendation:** Use Unitronic Li2YCY(TP) 2x2x0.22 (Lapp cable) for bus wiring.
- A segment of an RS-485 bus structure can contain up to 32 nodes/devices. If there are more than 32 nodes/devices, use repeaters to connect segments.

A WARNING

Risk of injury or damage to the device due to electrical voltage and improper connection! High measuring currents can cause temperatures of up to 80 °C (176 °F) at the connections. Use wiring designed for an operating temperature of up to 80 °C (176 °F)!

7.8.1 Shielding

For connections via the interfaces, use a twisted and shielded cable and observe the following for the shielding:

- · Ground the shields of all cables leading into the switchboard cabinet at the cabinet entrance.
- · Route the cables into the switchboard cabinet through suitable cable inlets, e.g. PG glands.
- · Connect the shield to a noiseless ground and ensure a large surface area with good conductivity.
- Mechanically restrain the cables before the grounding clamp to prevent damage from cable movement (strain relief).

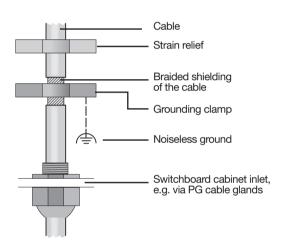
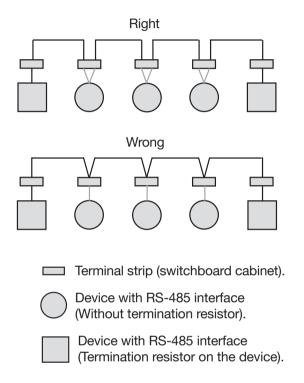


Fig. Shielding design at entrance to switchboard cabinet.

A WARNING

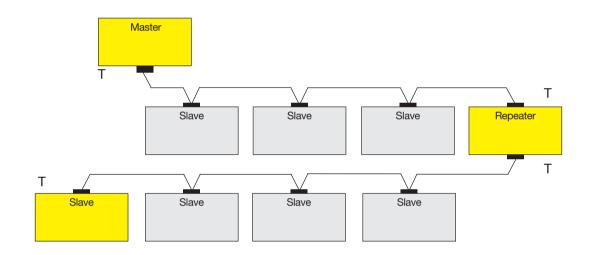

Risk of injury due to high currents and high electrical voltages!

Atmospheric discharge can cause transmission errors and dangerous voltages on the device. Therefore please abide by the following:

- Connect the cable shielding to functional earth (PE) at least once.
- For larger sources of interference or frequency converters in the switchboard cabinet, connect the shielding to functional earth (PE) as close to the device as possible.
- Comply with the maximum cable length of 1,200 m at a baud rate of 38.4 kbps.
- Use shielded cables.
- Route interface cables spatially separated or additionally insulated from mains voltage-carrying system components.

7.8.2 Termination resistors/Termination

Terminate the beginning and end of your bus segments with termination resistors (120 Ω /0.25 W - see section "Bus structure (bus segment)"). The device does not contain an integrated termination resistor!



7.8.3 Bus structure (bus segment)

In a bus structure:

- · Connect all devices in line.
- · Each device has its own device address.
- \cdot You can integrate up to 32 devices (nodes). Terminate the beginning and the end of your bus segment with termination resistors (inside the devices or with 120 Ω /0.25 W termination resistors).
- · Use repeaters (signal amplifiers) to connect bus segments if there are more than 32 nodes.
- · Devices with bus termination switched on must be powered.

- It is recommended that the master be placed at the end of a segment. If the master is replaced with the bus termination switched on, the bus is out of operation.
- The bus can become unstable if a slave with bus termination switched on is replaced or is de-energized.
- Devices that are not involved in the bus termination can be replaced without the bus becoming unstable.

- Power supply necessary

Т

- Bus terminator on

Master - e.g. UMG 605

Slave - e.g. UMG 806

Fig. Representation of a bus structure

7.9 Digital output

The device has 1 digital output, which

- · Is electrically isolated from the evaluation electronics via an optocoupler.
- · Is not short-circuit proof.
- · Is used as a pulse output to count the energy consumption.
- · Can switch direct and alternating current loads via relays or semiconductor electronics

Pulse constant

The device delivers 5000 pulses per secondary kWh, i.e. the transformer ratios are not taken into account. The energy value actually consumed (primary side) in relation to the time period must be scaled using the transformer ratios of the transformers.

$$x \text{ kWh} = \frac{\text{Number of pulses}}{5000} \times \frac{\text{Ip}}{\text{Ig}} \times \frac{\text{Up}}{\text{Ug}}$$

IP/IS: Current transformer ratio

(primary to secondary current)

UP/US: Voltage transformer ratio

(primary to secondary voltage)

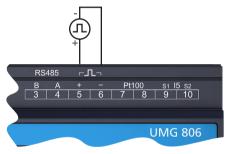


Fig.: Connection example for digital output

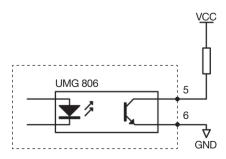


Fig.: Schematic diagram of digital output

ATTENTION

Transmission error and material damage due to electrical malfunction.

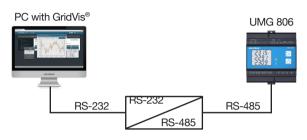
With a cable length of more than 30 m, there is an increased probability of transmission errors and damage to the device due to atmospheric discharge!

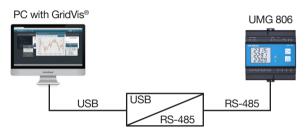
Use shielded cables for the connections to the digital inputs and outputs!

ATTENTION

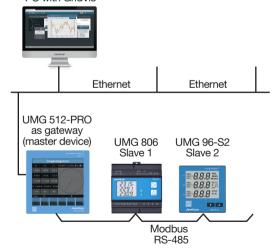
Connection errors can damage the device and cause material damage.

The digital outputs are not short-circuit proof! Connection errors can therefore lead to damage to the connections.

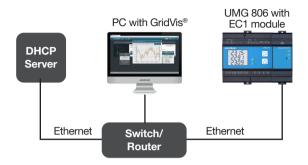

Make sure that the wiring is correct when connecting the outputs.


8. PC connection

8.1 Connection to a PC


The most common connection methods for communication of the device with a PC (with GridVis® software installed) are described below.

1. Connection via interface converter:



- 2. Connection via a master device (UMG 512-PRO) as a gateway:
- 3. Connection to a DHCP server and PC. The PC with GridVis®

DHCP server automatically assigns IP addresses to the device and the PC.

ATTENTION

Material damage due to security vulnerabilities in programs, IT networks and protocols.

Security vulnerabilities can lead to data misuse and faults and even the standstill of your IT infrastructure.

To protect your IT system, network, data communications and measurement devices:

- Inform your network administrator and/or IT representative.
- Always keep the meter firmware up to date and protect the communication to the meter with an external firewall. Close unused ports.
- Take protective measures against viruses and cyber attacks from the Internet, e.g. through firewall solutions, security updates and virus protection programs.
- Eliminate security vulnerabilities and update or renew existing protection for your IT infrastructure.

ATTENTION

Material damage due to incorrect network settings.

Incorrect network settings can cause faults in the IT network!

Consult your network administrator for the correct network settings for your device.

9. Operation and button functions

9.1 Controls

The device has a display and 2 function buttons to enable installation, commissioning and configuration without a PC. The 2 function buttons are for:

- Navigation within the measuring displays (display mode).
- · Entering the configuration mode.
- · The device configuration.

Fig. UMG 806 measuring display "Voltage L1-N, L2-N and L3-N" and function buttons.

9.2 Function buttons

Button	Function
	 Select position (to the right "▶"). Confirm selection. Navigate to the measuring displays (display mode).
	Increment digit or change decimal place. Navigate to the measuring displays (display mode).
	Press and hold buttons 1 and 2 simultaneously for 1 s to enter the Configuration mode . For more information on parameter configuration, see chapter "10. Configuration" on page 47.

Tab.: Function buttons

When the power supply is restored, the device starts with the first measuring display *Voltage L1-N, L2-N and L3-N*.

9.3 Operation

During operation, the device distinguishes between the display and configuration modes.

9.3.1 Display mode

- Use button 1 and button 2 to scroll between the measuring displays.
- The measuring display shows up to 3 measured values.

9.3.2 Configuration mode

- The configuration mode is used to configure the parameters necessary for the operation of the device.
- Press and hold buttons 1 and 2 simultaneously for 1 s to switch between the display and configuration modes.
- A password request (standard setting 0000 no password - see the section Password) takes you to the configuration mode.
- In configuration mode, the character X appears on the display.

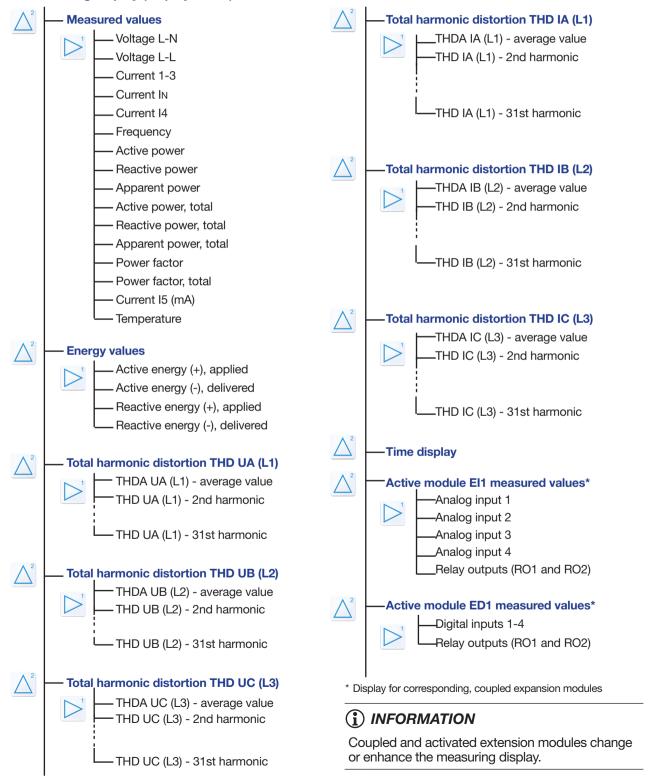
To switch back to the display mode:

- · Press buttons 1 and 2 simultaneously for 1 s.
- Do not press any buttons for 4 m (240 s) automatic.

(i) INFORMATION

The device saves changes only after leaving the configuration mode (press buttons 1 and 2 simultaneously; the device saves and then changes back to the display mode).

9.4 Password


In order to prevent configuration data from being changed inadvertently, the device has the option of requiring a password. The device requires a password when switching from the display to the configuration mode (simultaneous pressing of buttons 1 and 2). Configure parameter 500 for this purpose!

Default setting "Configuration without password request": **0000** (in parameter 500).

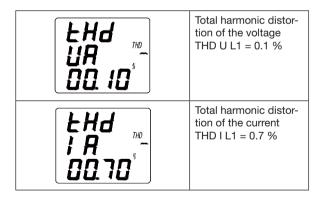
9.5 Overview of measuring display (display mode)

The measurement device measures electrical quantities such as voltage, current, power, power factor, frequency, energy, harmonics, asymmetries or extreme values. Some of these electrical quantities can only be read out via the communication interface. More detailed information can be found in the Modbus address list.

Measuring display (display mode)

9.6 Examples of basic measuring displays

" 2000 _" " 1000 " 0500	Phase voltage U L1 = 200.0 V U L2 = 100.0 V U L3 = 50.0 V
1322 1322 1323	Mains voltage U L1-L2 = 264.4 V U L2-L3 = 132.2 V U L3-L1 = 229.0 V
"500 1 A "5000 "4999	Phase current I 1 = 5.001 A I 2 = 5.000 A I 3 = 4.999 A
5000 _{fz}	Frequency F = 50.00 Hz
"0500 _" "0250 - "0 125	Active power P L1 = 500 W P L2 = 250 W P L3 = 125 W
L1 0865 WR L2 0433 - L3 02 17	Reactive power Q L1 = 865 var Q L2 = 433 var Q L3 = 217 var
10999w 10500 10250	Apparent power S L1 = 999 VA S L2 = 500 VA S L3 = 250 VA

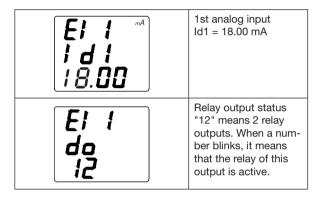

0875 ^w 5	Total active power ∑P = 875 W
15 15 ^{VAR} 2	Total reactive power ∑Q = 1515 var
1749 -	Total apparent power ∑S = 1749 VA
^{L1} 0500 L2 0500 L3 0499	Power factor PF 1 = 0.500 PF 2 = 0.500 PF 3 = 0.499
0500 pr 2	Total power factor PF = 0.500
15 1037	Residual current I5 = 103.7 mA
EENP 0520 :	Temperature T = 52.0 °C

9.7 Examples of energy measurement

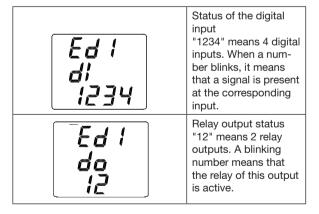
EP *, 0003 0784	Active energy applied EP = 30.784 kWh
EP -*, 0005 0430	Active energy delivered EP- = 50.430 kWh
E9 karr	Reactive energy
0000	applied
1364	EQ = 7.364 kvarh
E9 - k	Reactive energy
0000	delivered
8.000	EQ- = 8.000 kvarh

Energy values can be reset by the user!

9.8 Examples of power quality


The meter measures

- · The harmonic distortion of current and voltage
- · Harmonics up to the 31st
- · intermediary harmonic which can be read out via the communication interface


9.9 Example of time display

9.10 Example of active EI1 module

9.11 Example of active ED1 module

The measurement device is equipped with a power supply unit. No external power supply is required for the digital inputs.

The relay outputs have 2 operating modes:

- · Remote control
- · Alarm when limit values are exceeded

Settings must be made in the configuration menu for each relay output!

10. Configuration

10.1 Configuration mode

The configuration mode is used to configure the parameters necessary for the operation of the device. The device requires the supply voltage for configuration.

- Press and hold buttons 1 and 2 simultaneously for 1 s to switch between the display and configuration modes.
- A password request (standard setting 0000 no password - see the section Password) takes you to the configuration mode.
- · In configuration mode, the character 🔀 appears on the display.

A WARNING

Risk of injury due to electrical voltage!

Severe bodily injury or death can result from:

- Touching bare or stripped leads that are energized.
- · Terminals / inputs of the device that pose a hazard when touched.

Therefore please abide by the following

- · Cover or block off adjacent live parts!
- Use non-conductive tools and wear protective clothing.
- · Inform yourself about applicable safety guidelines.

10.2 Configuration

- Press and hold buttons 1 and 2 simultaneously for 1 s to switch between the display and configuration modes.
- Enter the code (password) in the display $\mathcal{L} \circ \mathcal{L}$ by pressing button 1 (confirm or change digit position) and button 2 (increment digit).
 - Default setting 0000 no password
- The 1st parameter address 000 for configuration of the primary current transformers I1 ..I3 appears.
- To complete your configurations and save them, press and hold buttons 1 and 2 simultaneously for 1 s.
- · The device then switches to the display mode.

Select the parameter to be configured according to the parameter list.

A parameter list can be found in chapter "10.3 Parameter list" on page 52.

Function of the buttons in the configuration mode

Button Function in the configuration mod		
	With button 1 · Change the digit position. · Confirm your input/number.	
	With button 2 Increment the activated digit or change the decimal place.	
	To save your changes and switch to the display mode, press buttons 1 and 2 simultaneously for 1 s!	

Tab.: Function buttons

10.2.1 Configuring the network system

Configure your network system in the following parameter address:

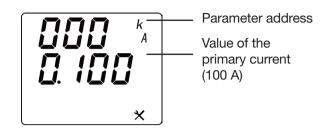
Address	Designation
110	Network system/wiring 0 : 3P4W (default setting) 1 : 3P3W 2 : 1P2W

Configure the parameters above as already described in section "10.2 Configuration" on page 47.

10.2.2 Configuring the current transformer ratios

The UMG 806 has 4 current measurement inputs (I1 to I4) and one residual current measurement input (I5).

- The default setting of all current transformer ratios of the device (I1-I4 and I5) is 5 A / 5 A.
- The current transformer ratios must be configured separately for current measurement inputs
 I1-I3, current measurement input I4 and residual current measurement input I5 (see table
 "Configuration of current transformer ratios").
- To configure the current transformer ratios, switch to the configuration mode of the device as described in section "10.2 Configuration" on page 47.


Parameters for configuring the current transformer ratios:

Address	Designation			
000	Current transformer primary, I1I3			
001	Current transformer secondary, I1I3			
010	Current transformer primary, I4			
011	Current transformer secondary, I4			
020	Residual current transformer primary, 15			
021	Residual current transformer secondary, I5			

Tab.: Configuration of the current transformer ratios

10.2.3 Example: Configuring the current transformer ratios I1-I3

- Press and hold buttons 1 and 2 simultaneously for 1 s to switch between the display and configuration modes.
- Enter the code (password) in the display \(\begin{align*} \text{\$\text{\$D\$}} & \text{\$d\$} \\ \text{\$E\$} \]
 using button 1 (confirm or change digit position) and button 2 (increment digit) (default setting \)
 \(\text{0000 no password request} \).
- Parameter address 000 appears with the display for configuring the current transformer ratio - primary side I1 - I3.
- Configure, for example, a primary side current of 100 A.

- · Go to the 1st digit (blinking) of the primary current value by pressing button 1.
- · Use button 2 to enter the value 0 for the 1st digit and use button 1 to go to the 2nd digit (blinking).
- · Use button 2 to enter the value 1 for the 2nd digit and use button 1 to go to the 3rd digit (blinking).
- · Use button 2 to enter the value 0 for the 3rd digit and use button 1 to go to the 4th digit (blinking).
- Use button 2 to enter the value 0 for the 4th digit and use button 1 to switch to the configuration of the decimal point.
- · In the example here, place the decimal point after the 1st digit.
- · Confirm your configuration by pressing button 1.
- · The 1st digit of the parameter address blinks.
- · Go to parameter address 001 using buttons 1 and 2 as described.
- Use buttons 1 and 2 to configure the secondary current (e.g. 5 A) in the same way as described above.

- · Finally, confirm the configuration by pressing buttons 1 and 2 simultaneously.
- If necessary, configure the current transformer ratios of current measurement input I4 in the same way (see table "Configuration of current transformer ratios").
- The device switches to the display mode (1st measuring display).

10.2.4 Example: Configuring the current transformer ratios of residual current measurement input I5 (700:1)

- Press and hold buttons 1 and 2 simultaneously for 1 s to switch between the display and configuration modes.
- Enter a password in the display $\mathcal{L} \circ \mathcal{L} \circ \mathcal{L}$ using button 1 (confirm or change digit position) and button 2 (increment digit) if necessary (default setting **0000 no password).**
- · The parameter address 000 appears.
- Use buttons 1 and 2 to go to parameter address 020 as described (see tab "Configuration of current transformer ratios").
- The primary value can be taken from your residual current transformer (e.g. 700 - with a transformer ratio of 700:1 of your residual current transformer).
- · Configure the primary side for residual current measurement, e.g. 700.

- · Go to the 1st digit (blinking) of the primary current value by pressing button 1.
- · Use button 2 to enter the value 0 for the 1st digit and use button 1 to go to the 2nd digit (blinking).
- · Use button 2 to enter the value 7 for the 2nd digit and use button 1 to go to the 3rd digit (blinking).
- Use button 2 to enter the value 0 for the 3rd digit and use button 1 to go to the 4th digit (blinking).
- · Use button 2 to enter the value 0 for the 4th digit.
- · Confirm your configuration by pressing button 1.
- · The 1st digit of the parameter address blinks.
- Go to parameter address 021 using buttons 1 and 2 as described.
- · Now configure the secondary side of the current transformer ratio with buttons 1 and 2.
- Configure a 1 for the secondary value of your residual current transformer, whereby this corresponds to the maximum value of the I5 measuring range (40 mA - see section Technical data - current measurement channel I5).

- · To save and finish, confirm the configuration by pressing buttons 1 and 2 simultaneously.
- The device switches to the display mode (1st measuring display).
- · The current transformer configuration is finished.

Example

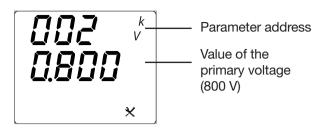
A current transformer ratio configuration of 700:1 and a secondary-side maximum value of the measuring range of 40 mA results in a maximum primary current of 28 A.

If there is now a secondary current of e.g. 3.57 mA at measuring input I5, this corresponds to a primary current of 2.5 A.

10.2.5 Configuring the voltage transformer ratios

The UMG 806 has 4 voltage measurement inputs (V1 - V3 and VN). Of these, you can configure the inputs L1 (V1) to L3 (V3).

- The default setting of all voltage transformer ratios of the device (V1-V3) is 380 V / 380 V.
- The voltage transformer ratios must be configured for the voltage measurement inputs V1-V3 (L1-L3).
- To configure the voltage transformer ratios, switch to the configuration mode of the device as described in section "10.2 Configuration" on page 47.


Parameters for configuring the voltage transformer ratios:

Address	Designation		
002	Voltage transformer primary, V1V3 (L1L3).		
003	Voltage transformer secondary, V1 V3 (L1L3).		

Tab.: Configuration of the voltage transformer ratios

10.2.6 Example: Configuring the voltage transformer ratios

- Press and hold buttons 1 and 2 simultaneously for 1 s to switch between the display and configuration modes.
- Enter the code (password) in the display \(\begin{align*} \text{\$\text{\$D\$}} & \text{\$d\$} \\ \text{\$E\$} \]
 using button 1 (confirm or change digit position) and button 2 (increment digit) (default setting \)
 0000 no password request).
- · The parameter address 000 appears.
- Go to parameter address 002 using buttons 1 and 2 as described.
- The display for configuring the primary side of the voltage transformer ratio appears. For example, configure a primary voltage of 800 V.

- · Go to the 1st digit (blinking) of the primary voltage value by pressing button 1.
- · Use button 2 to enter the value 0 for the 1st digit and use button 1 to go to the 2nd digit (blinking).
- · Use button 2 to enter the value 4 for the 2nd digit and use button 1 to go to the 3rd digit (blinking).
- · Use button 2 to enter the value 0 for the 3rd digit and use button 1 to go to the 4th digit (blinking).
- Use button 2 to enter the value 0 for the 4th digit and use button 1 to switch to the configuration of the decimal point.
- In the example here, place the decimal point after the 1st digit.
- · Confirm your configuration by pressing button 1.
- · The 1st digit of the parameter address blinks.
- Go to parameter address 003 using buttons 1 and 2 as described.
- Use buttons 1 and 2 to configure the secondary voltage (e.g. 400 V) in the same way as described above.

- · Finally, confirm the configuration by pressing buttons 1 and 2 simultaneously.
- The device switches to the display mode (1st measuring display).

10.2.7 Configuring the RS-485 interface (Modbus)

To operate the device via the RS-485 interface (see chapter "7.8 RS-485 interface" on page 38), configure the following parameter addresses:

- · Device address
- · Baud rate
- · Parity
- · Operating mode

Address	Designation
200	Device address (1 247)
201	Baud rate, RS-485 0 = 9,600 bit/s 1 = 19,200 bit/s 2 = 38,400 bit/s 3 = 57,600 bit/s 4 = 115,200 bit/s
202	RS-485, parity 0 = N.8.1 1 = E.8.1 2 = O.8.1 3 = N.8.2
203	RS-485, mode 0 = Modbus RTU/slave 1 = Modbus RTU/master

Tab.: Configuration of the RS-485 interface

Configure the parameters above as already described in section "10.2 Configuration" on page 47.

(i) INFORMATION

A parameter list can be found in chapter "10.3 Parameter list" on page 52

10.2.8 Configuring the Ethernet interface

(i) INFORMATION

The description of the Ethernet interface (module 806-EC1) can be found in chapter "13.7.2 Configuring the Ethernet interface" on page 65.

10.3 Parameter list

- · Parameter addresses are **not** Modbus addresses!
- Modbus addresses can be found in the separate Modbus address list in the download area at www.janitza.com

Address	Format	Designation	Setting range	Unit	Default setting
000	uint32	Current transformer primary, I1I3	1 9999999		5
001	uint16	Current transformer secondary, I1I3	16		5
002	uint32	Voltage transformer primär, L1L3	1 9999999		380
003	uint16	Voltage transformer secondary, L1 L3	1 690		380
010	uint32	Current transformer primary, I4	1 9999		5
011	uint16	Current transformer secondary, I4	16		5
020	uint32	Current transformer primary, I5	1 9999		5
021	uint16	Current transformer secondary, I5	1 9999		5
110	uint16	Network system/wiring 0:3P4W 1:3P3W 2:1P2W	0, 1, 2		0
113	uint16	Deletes all energy data (1 : delete)	0.1		
114	uint16	Resets all recordings (1 = reset)	0.1		
115	uint16	Resets all min. and max. values (1 = reset)	0.1		

Address	Format	Designation	Setting range	Unit	Default setting
200	uint8	Device address	1 247		1
201	uint8	Baud rate, RS-485 0 = 9,600 bit/s 1 = 19,200 bit/s 2 = 38,400 bit/s 3 = 57,600 bit/s 4 = 115,200 bit/s	07		3
202	uint8	RS-485, parity 0 = N.8.1 1 = E.8.1 2 = O.8.1 3 = N.8.2	03		0
203	uint8	RS-485, mode 0 = Modbus RTU/Slave 1 = Master	0.1		0

Address	Format	Designation	Setting range	Unit	Default setting
205	uint16	DHCP mode 0 = fixed IP 1 = DHCP client	0.1		0
300	uint8	IP address, xxx	0 255		0
301	uint8	IP address, xxx	0 255		
302	uint8	IP address, xxx	0 255		
303	uint8	IP address, xxx	0 255		
304	uint8	IP mask, xxx	0 255		
305	uint8	IP mask, xxx	0 255		
306	uint8	IP mask, xxx	0 255		
307	uint8	IP mask, xxx	0 255		
310	uint8	IP gateway, xxx	0 255		
311	uint8	IP gateway, xxx	0 255		
312	uint8	IP gateway, xxx	0 255		
313	uint8	IP gateway, xxx	0 255		

Address	Format	Designation	Setting range	Unit	Default setting
400	uint8	Day	1 31		XX
401	uint8	Month	1 12		XX
402	uint8	Year	0 - 99		XX
403	uint8	Hour	0 23		XX
404	uint8	Minute	0 59		XX
405	uint8	Second	0 59		XX
406	uint8	Accept data and time, 1 = Accept set data	0.1		0
410	uint16	EI1-RO1 mode 0=Off, 1=Alarm, 2=Remote control	0,1,2		2
411	uint16	EI1-RO1 pulse width 0 99.99	0 - 9999	0.01 s	0
412	uint16	EI1-RO1 alarm element (Reference Communication Address - see address 30030)	0 - 61		0
413	uint16	EI1-RO1 alarm value	0 - 9999		
414	uint16	EI1-RO1 hysteresis value	0 - 9999		
415	uint16	EI1-RO1 delay time	0 - 9999	0.01 s	3
420-425		EI1-RO2 (see 410-415)			
430-435		ED1-RO1 (see 410-415)			
440-445		ED1-RO2 (see 410-415)			

Address	Format	Designation	Setting range	Unit	Default setting
500	uint16	Device password 0 = No password configured	0 9999		0000
540	uint16	Temperature offset value	-99.9 99.9	°C	0
603	uint8	LCD backlight (on), time	0 180	S	60
604	uint8	LCD start screen 0 = U (voltage) 1 = I (current) 2 = P (active power) 3 = PF (power factor) 4 = EP (applied active energy) 5 = THD (total harmonic distortion)	05		0

11. Commissioning

i INFORMATION

Before commissioning, delete any production-related contents of the energy meters (see section "10.3 Parameter list" on page 52).

A WARNING

Material damage due to disregard of the connection instructions!

Voltages and currents outside the permissible measuring range can destroy the device.

Comply with the measuring range specifications from the technical data.

11.1 Supply voltage

Proceed as follows when applying the supply voltage:

- 1. Connect the supply voltage to terminals 1 and 2 of the device. The proper supply voltage can be found on the rating plate.
- 2. The standard display appears on the display.
- 3. If no display appears, check:
 - The connection of your device.
 - Whether the supply voltage is within the nominal voltage range.

11.2 Measured voltage

Connect measured voltage:

- 1. Connect the measured voltage to the terminals provided for this purpose (see section "Installation").
- After connecting the measured voltage, check the measured values displayed by the meter for the voltages L-N and L-L (take into account any voltage transformer factors that may have been set).

(i) INFORMATION

 In networks that exceed the specified nominal voltages, make sure to connect the voltage measurement inputs via voltage transformers

A WARNING

Risk of injury due to electrical voltage!

If the device is exposed to surge voltages above the permissible overvoltage category, safety-relevant areas of insulation in the device can be damaged. This means that the safety of the product can no longer be guaranteed.

Only use the device in environments in which the permissible overvoltage category is not exceeded (cf. section "Technical data").

11.3 Frequency measurement

The device requires the mains frequency for the measurement and calculation of measured values. The mains frequency is determined automatically by the device.

- To determine the mains frequency, a voltage greater than 10 V_{eff} (4-conductor measurement) or a voltage L1-L2 greater than 18 V_{eff} (3-conductor measurement) must be applied to voltage measurement input V1.
- The mains frequency must be in the range from 45 Hz to 65 Hz.
- · If the measured voltage is not sufficiently high, the device cannot determine the mains frequency and therefore cannot carry out a measurement.

11.4 Measured current

The device:

- Measures current exclusively via current transformers.
- Is designed for the connection of current transformers with secondary currents of ../1 A and ../5
- · Does not measure DC currents.

The factory-set current transformer ratio is 5/5 A and must be adapted to the current transformers used as needed.

The current transformers require a basic insulation according to IEC 61010-1:2010 for the nominal voltage of the circuit.

- 1. Short-circuit all current transformer outputs except one.
- 2. Compare the current displayed on the device with the applied input current.
 - The currents must match after taking the current transformer ratio into account (see section "Basic parameter settings").
 - In the short-circuited current measurement inputs, the device must indicate approx. 0 amperes.

11.5 Checking the phase assignment

The assignment of the phase conductor to the current transformer is correct if a current transformer is short-circuited on the secondary side and the current indicated by the device in the associated phase conductor drops to 0 A.

11.6 Checking the power measurement

- Short-circuit all current transformer outputs except one and check the indicated powers.
- The device must only display power in the phase conductor with the current transformer output that is not short-circuited.
- If this is not the case, check the connections of the measured voltage and the measured current.

If the amount of the measured active power is correct, but the sign is negative, this can have 2 causes:

- Reversed connections S1(k) and S2(l) at current transformer or
- Active energy is being delivered back into the grid.

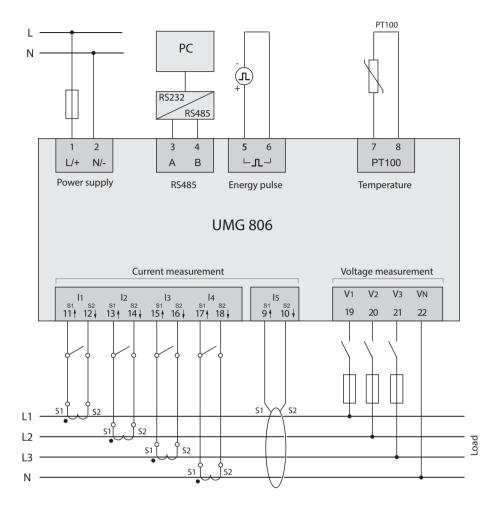
11.7 Checking measurement

Correctly connected voltage and current measurement inputs result in correctly calculated and displayed individual and summation power readings.

11.8 Checking individual power

If a current transformer is assigned to the wrong phase, the corresponding power is measured and displayed incorrectly.

The phase conductor and current transformer are correctly assigned on the device if there is no voltage between the phase conductor and the associated current transformer (primary).


To ensure that a phase conductor at the voltage measurement input is assigned to the correct current transformer for the power measurement, the respective current transformer can be short-circuited on the secondary side. The apparent power displayed by the device must then be zero in this phase conductor.

If the apparent power is displayed correctly but the active power has a negative ("-") sign, then the current transformer terminals are reversed or power is being supplied to the electric utility.

11.9 Checking summation power

If all voltages, currents and powers for the respective phase conductors are correctly displayed, the summation powers measured by the device are also correct. To confirm, compare the summation power values measured by the device with the power values of the meters installed in the feeders.

12. Connection example, UMG 806

13. Expansion modules

The following optional expansion modules can be used to extend the functionality of the basic device (the basic device only supports **one** extension module per module type):

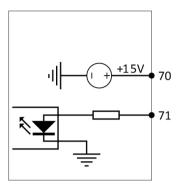
- · 806-EC1 module
- · 806-FD1 module
- · 806-EI1 module

Use the parameter list to activate the respective module, see chapters "10.3 Parameter list" on page 52.

13.1 Module types

13.1.1 806-EC1 module

The 806-EC1 communication module


- · Requires no external power supply.
- Extends the functional range of the basic device by an additional Ethernet interface for Modbus/ TCP and SNMP (MIB file in the download area at www.janitza.com).
- · Has a gateway/master functionality.

13.1.2 806-ED1 module

The 806-ED1 expansion module

- · Requires no external power supply.
- Extends the functional range of the basic device by an additional 4 digital inputs and 2 relay outputs
- · Is suitable for reading potential-free contacts.

In this regard, please refer to the connection example "13.4.1 806-ED1 module" on page 63.

The 2 relay outputs have two optional operating modes:

- · Remote control.
- · Alarm when limit values are exceeded. In the configuration settings, you can flexibly set the operating mode, alarm element, alarm range, etc. for each relay.

13.1.3 806-EI1 module

The 806-EI1 expansion module

- · Requires no external power supply.
- Extends the functional range of the basic device by an additional 4 analog inputs.
- · Provides the basic device with 2 relay outputs

The 2 relay outputs have two optional operating modes:

- · Remote control,
- · Alarm when limit values are exceeded. In the configuration settings, you can flexibly set the operating mode, alarm element, alarm range, etc. for each relay.

ATTENTION

Material damage due to disregard of the installation instructions!

Disregard of the installation instructions can damage or destroy your device.

 Provide adequate air circulation in your installation environment and, as needed, cooling when the temperatures are high.

WARNING

Risk of injury due to high currents and high electrical voltages!

Severe bodily injury or death can result from:

- · Touching bare or stripped leads that are ener-
- · Dangerous live current measurement inputs of the device and at the current transformers.

Therefore, please note for your system:

- Disconnect the supply of power before starting work!
- Secure it against being switched on!
- Check to be sure it is de-energized!
- Ground and short circuit! Use the ground connection points with the ground symbol for grounding!
- Cover or block off adjacent live parts!

(i) INFORMATION

When setting up your meter and module topology, note that:

- · The UMG 806 as a basic device allows the installation of one module type each (maximum 1 x EC1, 1 x ED1, 1 x El1).
- · For communication between the basic device and the module, the protective sticker on the side must be removed and the modules must be placed next to the basic device in a form-fit manner.
- The locking clamps between the basic device and the module removed previously must be put back in place.

13.2 Installing the modules

Install the module in switchboard cabinets or small distribution boxes according to DIN 43880 (any mounting orientation possible) on a 35 mm (1.38") DIN rail as follows:

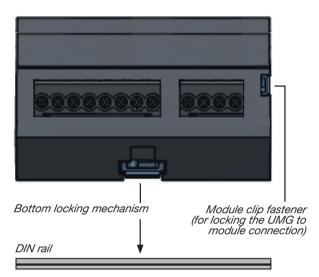
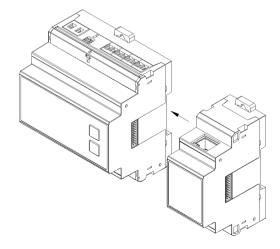
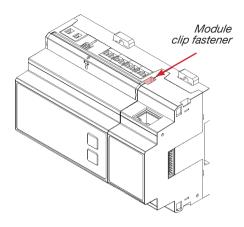
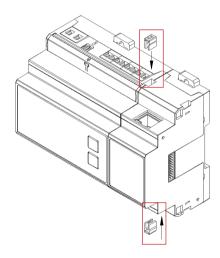
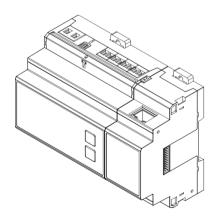
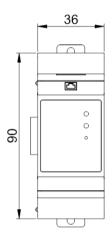




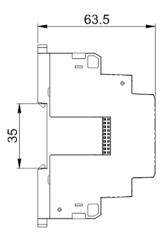
Fig. Device on DIN rail.

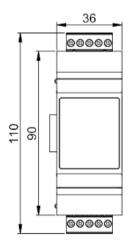

- 1. Remove the protective sticker on the side of the UMG 806.
- 2. Remove the module clip fasteners on the top and bottom if present.
- 3. Plug in the module (the plug is recessed on the side of the UMG, the socket is on the module).

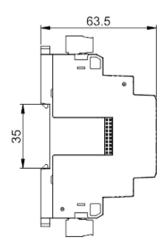

4. Check the connection of the UMG to the module!

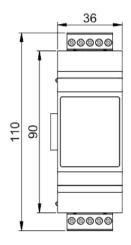
5. Lock the device together with the module at the top and bottom with the module clip fasteners.

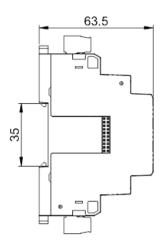


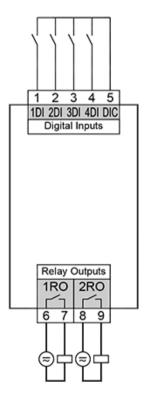

6. The UMG 806 can be combined with one 806-EC1, 806-EI1 or 806-ED1.

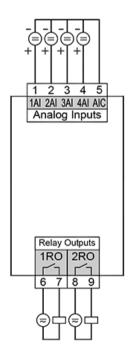

13.3 Front / side views


13.3.1 806-EC1 module




13.3.2 806-ED1 module


13.3.3 806-El1 module

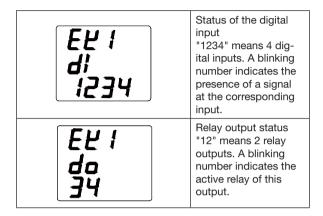


13.4 Connection examples

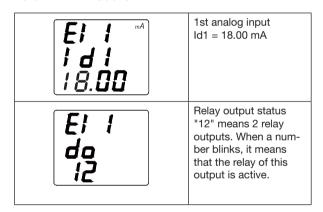
13.4.1 806-ED1 module

13.4.2 806-EI1 module

(i) INFORMATION

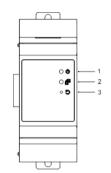

Observe the specified wiring when connecting the digital inputs! The high level is achieved by short-circuiting with PIN 5 (DIC). The wiring is therefore different from the other devices of the Janitza UMG series.

13.5 Module detection


Expansion modules are detected automatically and are in active mode after detection.

13.6 Display examples

13.6.1 ED1 module



13.6.2 El1 module

13.7 EC1 module

13.7.1 Front LEDs and reset button

- (1) Operation (RUN LED)
- (2) Communication between UMG and module (COM LED)
- (3) Reset button (load factory settings or restart)

Meaning of the RUN and COM LEDs

- · The RUN LED is always on after power up.
- The RUN and COM LEDs blink 3 times quickly and simultaneously -> Reset
- The RUN and COM LEDs blink 3 times slowly and simultaneously -> Reset to factory settings
- · COM LED not lit --> No data transmission
- · COM LED is blinking -> Data transmission active

Hardware and software preparation:

- 1. Prepare the 806-EC1 module and the UMG 806 measurement device.
- Plug the 806-EC1 module onto the UMG 806 measurement device. Switch on the measurement device. Connect the UMG 806-EC1 to a PC via a network cable.

Reset button:

- 1. To restart the system (with user configurations retained), press the reset button for 3-5 seconds while the system is running.
- To reset the device to default settings (clears user configurations), press the reset button before power on and hold it for 5-10 seconds during power on (RUN and COM LED blinking).

IP configuration factory settings:

IP address: 192.168.1.254
Subnet: 255.255.255.0
Gateway: 192.168.1.1

· DHCP: 0 (off)

13.7.2 Configuring the Ethernet interface

(i) INFORMATION

The UMG 806 basic device requires the 806-EC1 module to configure an Ethernet interface (see section ...8. PC connection" on page 42)!

To operate the device via the Ethernet interface, configure the following parameter addresses:

- · DHCP mode
- · IP address
- · IP subnet mask
- · IP gateway

DHCP mode

- Use DHCP to configure your UMG 806 with the 806-EC1 module for incorporation into an existing network.
- Depending on the configuration of the DHCP mode, the device automatically obtains the IP address, the IP mask (netmask) and the IP gateway from the DHCP server when it is started.
- A network setting assigned via DHCP can be read out via addresses 300-313 (see following table).
- If the DHCP mode is set to "fixed IP address" (parameter 205=0), but no network settings are set, the device tries to obtain an IP address via DHCP.

The default setting of the basic device with module is "fixed IP address" (0 in parameter 205)!

Address	Designation
205	DHCP mode 0 = fixed IP address 1 = DHCP client
300	IP address, xxx
301	IP address, xxx
302	IP address, xxx
303	IP address, xxx
304	IP mask, xxx
305	IP mask, xxx
306	IP mask, xxx
307	IP mask, xxx
310	IP gateway, xxx
311	IP gateway, xxx
312	IP gateway, xxx
313	IP gateway, xxx

Tab.: Configuration of the Ethernet interface

If the device is configured as a DHCP client (address 205 = 1), restart the device to obtain an IP address!

Configure the parameters above as already described in section "10.2 Configuration" on page 47.

(i) INFORMATION

- Parameter addresses are not Modbus addresses!
- Modbus addresses can be found in the separate Modbus address list.

ATTENTION

Material damage due to security vulnerabilities in programs, IT networks and protocols.

Security vulnerabilities can lead to data misuse and faults and even the standstill of your IT infrastructure.

To protect your IT system, network, data communications and measurement devices:

- Inform your network administrator and/or IT representative.
- Always keep the meter firmware up to date and protect the communication to the meter with an external firewall. Close unused ports.
- Take protective measures against viruses and cyber attacks from the Internet, e.g. through firewall solutions, security updates and virus protection programs.
- Eliminate security vulnerabilities and update or renew existing protection for your IT infrastructure.

Connection examples

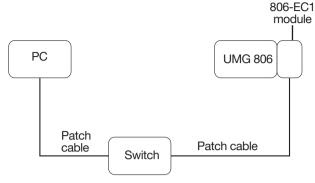


Fig. Connection example: UMG 806 with 806-EC1 module and PC require a fixed IP address (parameter 205 = 0).

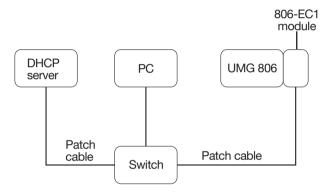


Fig. Connection example: UMG 806 with 806-EC1 module and PC are automatically assigned the IP address by a DHCP server (parameter 205 = 0 - default setting).

Gateway

- Timeout while establishing the connection
 If no data is exchanged within 30 s while TCP
 communication is being established, the connection is terminated.
- Timeout due to response timeout
 If there is no response within 1 s (not configurable) after sending data, a timeout error occurs.

ATTENTION

Material damage due to incorrect network settings.

Incorrect network settings can cause faults in the IT network!

Consult your network administrator for the correct network settings for your device.

13.8 Relay outputs of modules ED1 and EI1

The relay outputs can be controlled by

- · Automatic alarm control or
- · Manual control via Modbus addresses

13.8.1 Automatic alarm control

(Example for EI1-RO1)

- If the "Alarm" relay mode is selected (parameter address 410 = 1), configure the following parameters in the configuration mode:
- Alarm element (412)
- Alarm value (413)
- Hysteresis (414)
- Delay time (415)
- The pulse width (parameter address 411) must be set to 1.

(Pulse width = 0, the relay output acknowledges after the alarm value is undershot.

Pulse width \neq 0, the relay output acknowledges after the specified pulse width.

Alarm element:

Please note the setting ranges 0 to 61 (see "13.8.3 Table "Parameters of the alarm elements" - addresses (412, 422, 432, 442)" on page 68) for the alarm element.

Set the alarm value, hysteresis value and delay time as well.

- Alarm element "Limit value exceeded": Value at which the alarm is triggered.
 The alarm element is automatically reset as soon as the limit value is no longer exceeded, taking into account the hysteresis, and the value is within the specified range.
- Alarm element "Limit value undershot": Value at which the alarm is triggered.
 The alarm element is automatically reset as soon as the limit value is no longer undershot, taking into account the hysteresis, and the value is within the specified range.

Input-related alarms (digital inputs):

If the status of a digital input is selected as an alarm output (see Alarm elements table), no alarm threshold needs to be set.

- The selection "DI3_1" indicates, for example, that the third digital input is active.
- 1 describes that the output relay is set when the corresponding switching state is present at the input.
- If "DI3_0" is selected as the input specification, the relay output is only set if there is no input signal and if the input circuit is open.

(i) INFORMATION

A detailed parameter list can be found in chapter "10.3 Parameter list" on page 52.

13.8.2 Manual control via Modbus addresses

For control of the relays, configure a "2" in parameter address 410 (default setting) as described in chapter "10.2 Configuration" on page 47. In addition, the pulse width (parameter address 411) must be set to "s".

Pulse width:

The resolution is 0.01 s with a setting range of 0.1 - 99.99 s.

Modbus address set to 1 = ON Modbus address set to 0 = OFF

Modbus address 30160	EI1-RO1
Modbus address 30161	EI1-RO2
Modbus address 30162	ED1-RO1
Modbus address 30163	ED1-RO2

If the pulse width is set to 0 s, the relay is in level mode: the relay remains in the preset status (active or inactive, the time period set is not relevant in level mode) until a control signal via the Modbus addresses changes this status.

(See also Modbus address list, UMG 806 at www.janitza.com)

You can configure the relay outputs in the following parameter addresses:

Address	Designation
410	EI1-RO1 mode 0=Off, 1=Alarm, 2=Remote control (default setting)
411	EI1-RO1 pulse width 0 99.99
412	EI1-RO1 alarm element (Reference Communication Address - see Modbus address 30030).061 (see .,13.8.3 Table "Parameters of the alarm elements" - addresses (412, 422, 432, 442)" on page 68)
413	EI1-RO1 alarm value 0 - 9999
414	EI1-RO1 hysteresis value 0 - 9999 (default = 0)
415	EI1-RO1 delay time 0 - 9999
420-425	EI1-RO2
430-435	ED1-RO1(DO3)
440-445	ED1-RO2(DO4)

13.8.3 Table "Parameters of the alarm elements" - addresses (412, 422, 432, 442)

Contents of parameter address (alarm elements)

Address	
412 EI1 D01	
422 El1 D02	
432 ED1	Alarm element designation
D01 (D03)	
442 ED1	
D02 (D04)	V1 - Limit value exceeded
1	V1 - Limit value exceeded V1 - Limit value undershot
2	V2 - Limit value exceeded
3	V2 - Limit value undershot
4	V3 - Limit value exceeded
5	V3 - Limit value undershot
6	Vn - Limit value exceeded
7	Vn - Limit value undershot
8	V12 - Limit value exceeded
9	V12 - Limit value undershot
10	V23 - Limit value exceeded
11	V23 - Limit value undershot
12	V31 - Limit value exceeded
13	V31 - Limit value undershot
14	V I - Limit value exceeded
15	VI - Limit value undershot
16	VLN avg - Limit value exceeded
17	VLN avg - Limit value undershot
18	VLL avg - Limit value exceeded
19	VLL avg - Limit value undershot
20	I1 - Limit value exceeded
21	I1 - Limit value undershot
22	I2 - Limit value exceeded
23	I2 - Limit value undershot
24	I3 - Limit value exceeded
25	I3 - Limit value undershot
26	I i - Limit value exceeded I i - Limit value undershot
27	
28 29	I avg - Limit value exceeded I avg - Limit value undershot
30	I n - Limit value exceeded
31	I n - Limit value exceeded
32	P - Limit value exceeded
33	P - Limit value exceeded P - Limit value undershot
34	Q - Limit value exceeded
35	Q - Limit value undershot
36	S - Limit value exceeded
37	S - Limit value undershot
38	PF - Limit value exceeded
39	PF - Limit value undershot

40	F - Limit value exceeded
41	F - Limit value undershot
42	U unb - Limit value exceeded
43	U unb - Limit value undershot
44	I unb - Limit value exceeded
45	I unb - Limit value undershot
46	THD U - Limit value exceeded
47	THD U - Limit value undershot
48	THD I - Limit value exceeded
49	THD I - Limit value undershot
50	Alarm status 1
51	Alarm status 0
52	DIX_1
53	DIX_0
54	DI1_1
55	DI1_0
56	DI2_1
57	DI2_0
58	DI3_1
59	DI3_0
60	DI4_1
61	DI4_0

(i) INFORMATION

- The configuration of the contents of the alarm elements, such as "lower and upper limit values" can be found in the Modbus address list for the device (from address 30028).
- The Modbus address list for the device can be found at **www.janitza.com**!

13.8.4 Alarm elements and units of the alarm limit values

Alarm element (designation/formula variable)		Unit of the relevant alarm value
	Ua (V1), Ub (V2), Uc (V3), Un (Vn), Uab (V12), Ubc (V23), Uca (V31), Ul (VI - any mains voltage)	
Voltage	Una (VLN avg - average mains voltage), Ula (VLL avg - average phase voltage)	0.1 V
	la (I1), lb (I2), lc (3), l (li - any phase current)	0.001 A
Current	I avg (average current value)	0.001 A
	I n (leakage current)	0.001 A
Active power	P	1 W
Reactive power	Q	1 var
Apparent power	S	1 VA
Power factor	PF	0.001
Frequency	F	0.01 Hz
Voltage/current unbalance	U unb, I unb	
Harmonic load of voltage and current	THD U, THD I	0.01%
Alarm status	Alarm status 1, alarm status 0	
	DIX_1 (Alarm when any digital input iS equals 1)	
	DIX_0 (Alarm when any digital input iS equals 0)	
Digital inputs	DI1_1, DI2_1, DI3_1, DI4_1 (Alarm when the respective digital input equals 1)	
	DI1_0, DI2_0, DI3_0, DI4_0 (Alarm when the respective digital input is 0)	

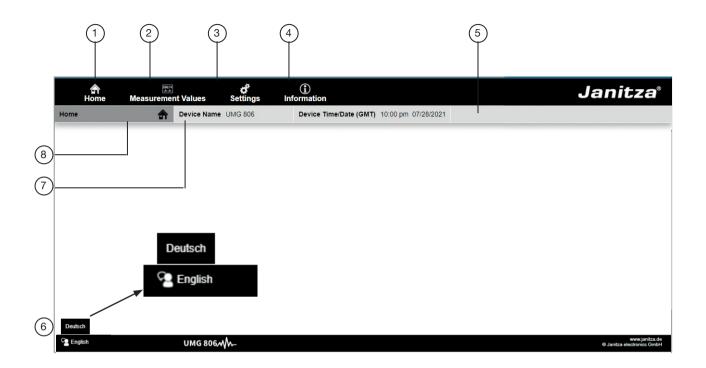
14. EC1 module homepage

14.1 LOG IN

The device's own UMG 806 module homepage can be accessed via the EC1 module by calling up the IP address in a web browser.

The network settings of the EC1 module can be found in the chapter "13.6.2 El1 module" on page 64.

Default username: **admin** Default password: **admin**



14.2 Overview

The homepage consists of four main parts:

- · Home Start page
- Measured values
 Display of the device's realtime values
- System settings
 Change settings and parameters
- · Information System information and firmware update function

The overview line shown on the following page is always visible and accessible on every page of the homepage.

1	Home: Start page with a brief overview of the most important measured values
2	Measured values: Complete overview of all relevant measured values
3	Settings Drop-down menu providing access to all setting options
4	Information: Displays basic device information
5	Time / Date: Displays the time and date (GMT)
6	Switch language: German or English
7	Device name: Name of the device
8	Currently displayed page: The example here shows the page "Home"

14.3 Home

Contains a brief overview of the most important measured values present on the individual phases

- · Voltage in volts (LN reference)
- · Current in amps
- · Active power in kilowatts
- · Cos-phi (unitless)
- Vectorial sum value (L1..L3) of the active power and cos-phi

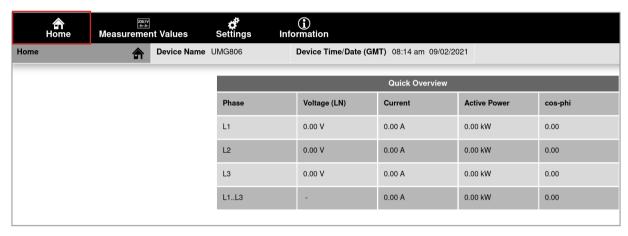


Fig. Homepage of the UMG 806 with EC1 module

14.4 Measured value display

In the menu bar, select "Measured values" to display a complete overview of the device's relevant realtime measured values.



Fig. Measured value display Basic parameters, temperature, RCM

1

Basic parameters, phase-referenced (L1, L2, L3)

Voltage in volts (LL reference) (V)

Voltage in volts (LN reference) (V)

Active power in kilowatts (kW)

Consumed active energy in kilowatt hours (kWh)

Reactive power in kilovar (kvar)

Reactive energy in kilovarh (kvarh)

Current in amperes (A)

cos-phi (unitless)

THD U (unitless)

THD I (unitless)

2

Basic parameters, vectorial sum (L1..L3)

Active power in kilowatts (kW)

Active energy in kilowatt hours (kWh)

Reactive power in kilovar (kvar)

Reactive energy in kilovarh (kvarh)

cos-phi (unitless)

(3)

Temperature

- · Can be determined by means of PT100 (connection to pin 7 and 8 of the device)
- · Current value in degrees Celsius °C
- · Average value (averaged over the last 10 minutes) in degrees Celsius °C
- · Minimum value (measured by the device so far) in degrees Celsius °C
- · Maximum value (measured by the device so far) in degrees Celsius °C

(4)

Residual current monitoring (RCM)

- · RCM channel 1 (I5) (connection to pin 7 and 8 of the device)
- · Current value in milliamperes (mA)
- · Limit value (presently set limit value in (mA) to trigger the RCM alarm). The value displayed depends on the setting selected by the user:
- Static
- Dynamic
- Incremental (the limit value associated with the current power level is always displayed)
- · RCM current in % of arith. current sum (L1 + L2 + L3)
- · Percentage display of the momentary residual current measured value relative to the arithmetic current sum
- · RCM limit value in % of arith. current sum (L1 + L2 + L3)
- · Percentage display of the present limit value relative to the arithmetic current sum

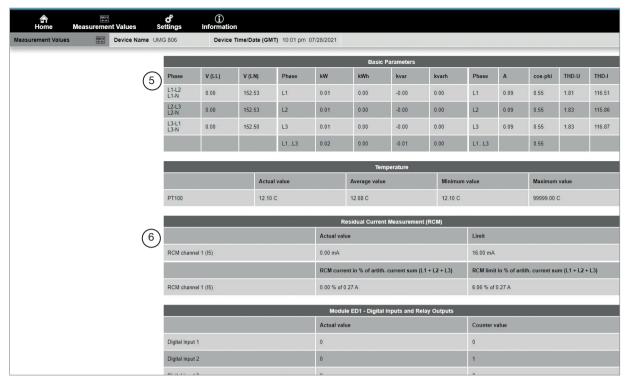


Fig. Measured value displays ED1, El1

(5) ED1 module - Digital inputs and relay outputs

- · Display of the momentary value and the meter readings of all digital inputs (1-4)
- · Display of the present state of all relay outputs (1 and 2)

(6) EI1 module - Analog inputs and relay outputs

- · Display of the momentary value of all analog inputs (1-4) in milliamperes (mA)
- · Display of the present state of all relay outputs (1 and 2)

14.5 Settings

Select "Settings" in the menu bar to access the parameter configuration items.

The drop-down menu for selecting the setting options is divided into five sections:

- · TCP/IP: Change the network settings
- · Modbus: Change the Modbus settings
- · **Transformers**: Change the transformer ratios
- Password: Change the password to access the homepage
- Firmware Update: Update of the firmware for the UMG 806 and EC1 module

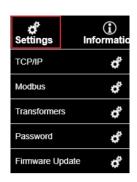
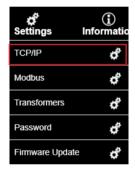



Fig. Menu for settings

14.5.1 TCP/IP

- Configuration of all TCP/IP network settings for the communication between the UMG 806 basic device and the EC1 module.
- · DHCP is the default setting when the device is delivered.
- · Configuration options:
- DHCP: ON/OFF
- IP address
- Subnet mask
- Gateway
- All changes must be saved with "Save" for them to take effect.

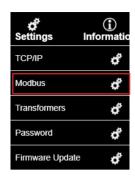



Fig. Settings: TC/IP

14.5.2 MODBUS

- Configuration of all Modbus settings for the UMG 806
- · Configuration options:
- Device address: Default setting: 1
- Baud rate in bit/s: from 9600 to 115200 bit/s; default: 9600 bit /s)
- Data type: N.8.1, E.8.1, O.8.1, N.8.2; default: N.8.1
- Mode: Slave, master; default: Slave
- · All changes must be saved with "Save" for them to take effect.

 Configuration of the device address for the EC1 module

With the EC1, it is possible to read measured values from basic devices that are connected to a UMG 806 (mode: master) via RS-485 (mode: slave).

Restriction: Measured values from the additional modules cannot be displayed via this function.

- · Configuration options:
 - Device address EC: For communication with the corresponding UMG 806 (this setting depends on the mode set on the UMG 806 basic device).
- UMG 806 in "slave mode": Automatic setting of the EC1 device address
- UMG 806 in "master mode": Manual setting of EC1 device address. The device address of the EC1 must match the corresponding device address of the UMG 806 whose values are to be displayed on the homepage.
- · All changes must be saved with "Save" for them to take effect.

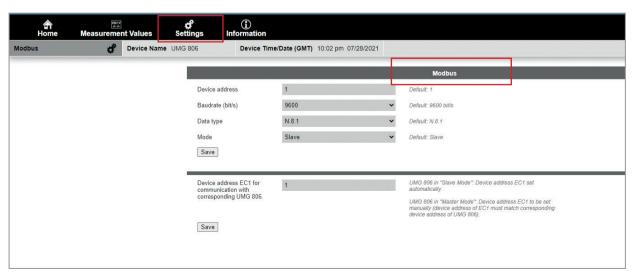
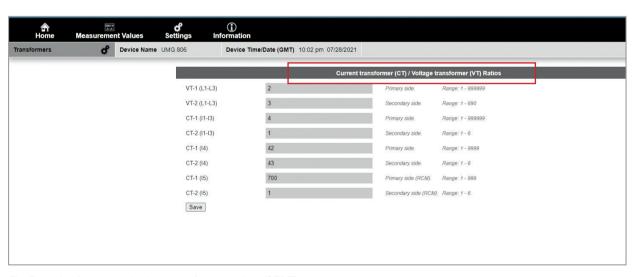
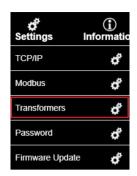


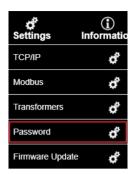
Fig. Example of Modbus settings for the UMG 806 device

14.5.3 Current transformer (CT) / Voltage transformer (VT) ratios

Configuration of all transformer ratios

- · Configuration options:
- VT-1 (L1-L3): Entry for primary side voltage transformers L1-L3 (range 1 to 999999)
- VT-2 (L1-L3): Entry for secondary side voltage transformers L1-L3 (range 1 to 690)
- CT-1 (I1-I3): Entry for primary side current transformers L1-L3 (range 1 to 999999)
- CT-2 (I1-I3): Entry for secondary side current transformers L1-L3 (range 1 to 6)
- CT-1 (I4): Entry for primary side current transformer, fourth current input (range 1 to 9999)
- CT-2 (I4): Entry for secondary side current transformer, fourth current input (range 1 to 6)
- CT-1 (I5): Entry for primary side current transformer, RCM current input (range 1 to 999)
- CT-2 (I5): Entry for secondary side current transformer, RCM current input (range 1 to 6)
- · All changes must be saved with "Save" for them to take effect.


Fig. Example of current and voltage transformer settings (CT/VT)

14.5.4 Password

Enter and/or change password to access device settings and homepage.

- · **Default:** admin / admin
- · Current password: Enter the current password.
- **New password:** Enter the new, user-defined password with a maximum of 20 characters.
- Confirm new password: Enter the new password again.
- · All changes must be saved with "Save" for them to take effect.

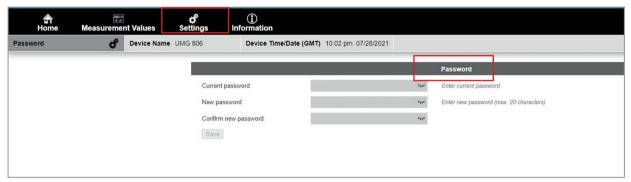


Fig. Entering / changing the password

14.5.5 Firmware Update

This function can be used to update the firmware of the UMG 806 basic device as well as the EC1 communication module.

- Select device: Selection of the device to be updated.
- · Select file:
- 1. Unzip the update ZIP file and select BIN file UMG 806.2025.bin.
- Confirm the selection with the "Upload firmware" button.
- The connection to the EC1 module might be lost after the update. The connection can be restored by a browser refresh after a successful update.
- The new firmware versions can be viewed under the menu item "Information".

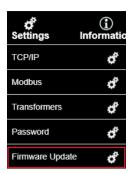


Fig. Firmware update

14.6 General information

This area displays basic information about the device.

· Device name:

- User-defined configuration via the GridVis® software
- Is identical to the device name displayed at the top left of every page on the homepage (20 characters; ASCII 256)

Device description:

- Can be set via GridVis
- Can contain user-defined additional information about the device (40 characters; ASCII 256)
- Basic device firmware version (UMG 806):
 Currently installed firmware version
- Communication module firmware version (EC1): Currently installed firmware version
- · Homepage version: Current homepage version
- · MAC address: Device-specific MAC address

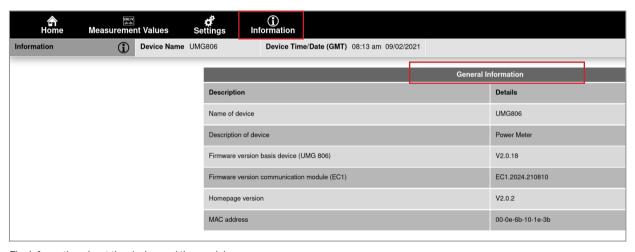


Fig. Information about the device and the module

15. Service and maintenance

Prior to outbound delivery, the device is subjected to various safety tests and is marked with a seal.

(i) INFORMATION

For opened devices (damaged or removed seal):

- New safety inspections are required for safe operation!
- · The warranty expires!

The warranty is only valid for unopened devices!

15.1 Repair and calibration

Repair and calibration of the device must only be carried out by the manufacturer or an accredited laboratory!

The manufacturer recommends calibrating the device every 5 years!

A WARNING

Warning of unauthorized tampering or improper use of the device.

Opening, dismantling or unauthorized manipulation of the device which goes beyond the mechanical, electrical or other operating limits indicated can lead to material damage or injury, up to and including death.

- Only electrically qualified personnel are permitted to work on the devices and their components, assemblies, systems and current circuits!
- Always use your device or component only in the manner described in the associated documentation.
- In the event of visible damage, or for the purpose of repair and calibration, return the device to the manufacturer!

15.2 Front panel foil and display

Please note the following for the care and cleaning of the front foil and the display:

ATTENTION

Material damage due to improper care and cleaning of the device.

The use of water or other solvents, such as denatured alcohol, acids, acidic agents for the front foil or the display can damage or destroy the device during cleaning. Water can, for example, penetrate into the device housing and destroy the device.

- · Clean the device, the front foil or the display with a soft cloth.
- Use a cloth moistened with clear water for heavy soiling.
- Clean the front foil and the display, e.g. of fingerprints, with a special LCD cleaner and a lint-free cloth.
- Do not use acids or acidic agents to clean the devices.

15.3 Service

For questions not answered or described in this manual, please contact the manufacturer. Please be certain to have the following information ready to answer any questions:

- · Device designation (see rating plate).
- · Serial number (see rating plate).
- · Software release (see system display).
- · Measured voltage and supply voltage.
- · An exact error description.

15.4 Device adjustment

The manufacturer adjusts the devices before delivery. No readjustment is required when the environmental conditions are complied with.

15.5 Clock/Battery

The supply voltage supplies the internal clock of the meter. If the supply voltage fails, the battery takes over the supply of voltage to the clock. The clock provides date and time information, for example, for recordings, minimum/maximum values and events.

The life expectancy of the battery is at least 5 years at a storage temperature of +45 °C (113 °F). The typical life expectancy of the battery is 8 to 10 years.

WARNING

Risk of injury due to electrical voltage! Serious personal injury or death may occur due to:

- · Touching bare or stripped leads that are energized.
- · Device inputs that pose a hazard when touched. Also observe the following when handling your device before starting work:
- · Disconnect the system/device from the power supply!
- Secure it against being switched on!
- Check to be sure it is de-energized!
- · Ground and short circuit!
- Cover or block off adjacent live parts!

A CAUTION

Risk of injury due to fire or burns!

The battery used in the device may cause fire or burns if used improperly.

In case of damage, return devices with a soldered battery to the manufacturer, observing proper transport conditions!

15.6 Procedure in the event of a malfunction

Failure mode	Cause	Remedy
No display	External fuse for the supply voltage has tripped.	Replace fuse.
No ouwent display	No measured voltage connected.	Connect measured voltage.
No current display.	No measured current connected.	Connect measured current.
	Current measurement on the wrong phase.	Check connection and correct if necessary.
Displayed current is	Current transformer factor incorrectly programmed.	Read and program the current transformer ratio on the current transformer.
too great or too small.	Current harmonic exceeds current peak value at measuring input.	Install current transformer with larger current transformer ratio.
	The current at the measuring input is too low.	Install current transformer with smaller current transformer ratio.
Displayed voltage is	Measurement on the wrong phase.	Check connection and correct if necessary.
too high or too low.	Voltage transformer programmed incorrectly.	Read the voltage transformer ratio on the voltage transformer and program.
Displayed voltage	Overrange.	Use a voltage transformer.
is too low.	The voltage peak value at the measuring input was exceeded due to harmonics current.	Attention! Make sure that the measuring inputs are not overloaded.
Incorrect display "Inductive/ capacitive phase shift"	Current path assigned to the wrong voltage circuit.	Check connection and correct if necessary.
Active power consumed/deliv-	At least one current transformer connection is reversed.	Check connection and correct if necessary.
ered is reversed.	One current path assigned to the wrong voltage circuit.	Check connection and correct if necessary.
	Incorrectly programmed current transformer ratio.	Read and program the current transformer ratio on the current transformer.
Active power too small or too great.	Current path assigned to the wrong voltage circuit.	Check connection and correct if necessary.
	Incorrectly programmed voltage transformer ratio.	Read the voltage transformer ratio on the voltage transformer and program.
An input/output is not re-	Incorrectly programmed input/output.	Check programming and correct if necessary.
sponding.	Incorrectly connected input/output.	Check connection and correct if necessary.
No communication with the basic device	RS-485: - Incorrect device address - Different bus speeds (baud rate) and/or data frames Incorrect protocol No termination.	Correct the device address. Correct the speed (baud rate). Correct the data frame. Correct the protocol. Terminate bus with termination resistor.
No communication with the EC1 Ethernet module	- Incorrect device IP address - Incorrect subnet mask - Incorrect gateway	- Check and change the settings if necessary
No module communication with the basic device	- Incorrect mounting of module to the basic device	Check the installation of the basic device and the module Check the plug connections between the device and the modules
Despite the above measures, the device does not function.	Device defective.	Send the device and error description to the manufacturer for inspection.

ATTENTION

Material damage due to overloaded measuring inputs!

Too high current and voltage values overload the measuring inputs and can damage the device.

- · Adhere to the limit values specified on the rating plate and in the technical data
- · Check your installation and connections!

16. Technical data

16.1 Technical data, UMG 806

General	
Net weight	300 g (0.66 lb)
Device dimensions	Approx. B = 90 mm (3.54 in), H = 90 mm (3.54 in), D = 63.5 mm (2.5 in)
Horizontal pitch	5.HP.
Battery	Type Li-Mn CR2032, 3 V
Backlight service life	45000 h (50% of the initial brightness)
Mounting orientation	As desired
Impact resistance	IK04 according to IEC 62262

Transport and storage The following specifications apply for devices transported and stored in the original packaging.	
Free fall 1 m (39.37 in)	
Temperature	-30° C (-17.2 °F) to +80° C (176 °F)
Relative humidity	5 to 95 % RH at 77 °F (25 °C), non-condensing

Environmental conditions during operation	
The device: • For weather-protected and stationary use. • Fulfills operating conditions according to DIN IEC 60721-3-3. • Has protection class II according to IEC 60536 (VDE 0106, part 1), a ground wire connection is not required!	
Rated temperature range	-25 °C (-13 °F) to +70 °C (158 °F)
Relative humidity	5 to 95 % at 77 °F (25 °C), non-condensing
Operating elevation/overvoltage category	< 2500 m (8200 ft) above sea level
Pollution degree	2
Ventilation	No forced ventilation required.
Protection against foreign matter and water	IP20 according to EN60529

Supply voltage	
Nominal range	AC/DC: 80 V - 270 V
Operating range	+/-10% of nominal range
Power consumption	max. 7 VA
Recommended overcurrent protective device for line protection	5 A, (type B), IEC/UL approval

Voltage measurement	
3-phase 4-conductor systems with rated voltages up to	230 VLN / 400 VLL (+/-10%) acc. to IEC
3-phase 3-conductor systems (grounded) with rated voltages up to	400 VLL (+/-10%) acc. to IEC
Overvoltage category	300 V CAT III according to IEC
Rated surge voltage	4 kV
Protection of the voltage measurement	1 - 10 A tripping characteristic B (with IEC/UL approval)
Measuring range L-N	0 230 V _{eff} (max. overvoltage 277 V _{eff})
Measuring range L-L	0 400 V _{eff} (max. overvoltage 480 V _{eff})
Resolution	0.1 V
Crest factor	2 (referred to measuring range 230 V L-N)
Impedance	>1.7 MΩ/Phase
Power consumption	approx. 0.1 VA / phase
Sampling frequency	8 kHz / phase
Frequency of fundamental oscillation - Resolution	45 Hz 65 Hz 0.01 Hz
Harmonics	1 31.

Current measurement (/1 A) (/5 A)	
Nominal current	5 A
Channels	4
Measuring range	0.005 6 A _{eff}
Crest factor (relative to the nominal current)	2
Overload for 1 s	100 A (sinusoidal)
Resolution	1 mA
Overvoltage category	300 V CATII
Rated surge voltage	4 kV
Power consumption	approx. 0.2 VA
Sampling frequency	8 kHz
Harmonics	1 31.

Current measurement (measuring range 0 40 mA, AC)	
Channel I5	1

Digital outputs Energy pulse output	
Switching voltage	max. 35 V DC
Switching current	max. 10 mA _{eff} DC
Response time	approx. 500 ms
Pulse width	80 ms ±20%
Digital output (energy pulses)	max. 10 Hz

Temperature measurement	
Update time	1 s
Total load (sensor and cable)	max. 0.35 k Ω
Suitable sensor types	PT100

Cable length (digital output, temperature measurement)	
Up to 30 m (32.81 yd)	Unshielded
Greater than 30 m (32.81 yd)	Shielded

RS-485 interface	
2-wire connection	
Protocol	Modbus RTU
Transmission rate	up to 115.2 kbps

Connecting capacity of the terminals (supply voltage) Connectible conductors. Only connect one conductor per terminal point!		
Single core, multi-core, fine-stranded	0.14 - 2.5 mm², AWG 26-14	
Wire ferrules (non-insulated)	0.25 - 2.5 mm², AWG 23-14	
Wire ferrules (insulated)	0.25 - 1.5 mm², AWG 23-16	
Tightening torque	0.5 - 0.6 Nm (4.43 - 5.31 lbf in)	
Strip length	7 mm (0.2756 in)	

Connecting capacity of the terminals (current measurement) Connectible conductors. Only connect one conductor per terminal point!		
Single core, multi-core, fine-stranded	0.2 - 4 mm², AWG 24-12	
Wire ferrules (non-insulated)	0.25 - 2.5 mm², AWG 23-14	
Wire ferrules (insulated)	0.25 - 1.5 mm², AWG 23-16	
Tightening torque	0.5 - 0.6 Nm (4.43 - 5.31 lbf in)	
Strip length	7 mm (0.2756 in)	

Connecting capacity of the terminals (voltage measurement) Connectible conductors. Only connect one conductor per terminal point!		
Single core, multi-core, fine-stranded	0.2 - 4 mm², AWG 24-12	
Wire ferrules (insulated/non-insulated)	0.25 - 2.5 mm², AWG 23-14	
Strip length	7 mm (0.2756 in)	

Connection capacity of the terminals (RS-485, digital output, temperature measurement)		
Single core, multi-core, fine-stranded	0.2 - 4 mm², AWG 24-12	
Wire ferrules (non-insulated)	0.25 - 2.5 mm², AWG 23-14	
Wire ferrules (insulated)	0.25 - 1.5 mm², AWG 23-16	
Tightening torque	0.5 - 0.6 Nm (4.43 - 5.31 lbf in)	
Strip length	7 mm (0.2756 in)	

16.2 Performance characteristics of functions

Function	Symbol	Accuracy class	Display range	Norm
Voltage	U	0.2	0-999.9 kV	IEC61557-12
Current	I	0.2	0-99,99 kA	IEC61557-12
Active power	Р	0.5	0-9999 MW	IEC61557-12
Reactive power	Q	0.5	0-9999 Mvar	IEC61557-12
Apparent power	S	0.5	0-9999 MVA	IEC61557-12
Power factor	PF	0.5	0-1.000	IEC61557-12
Frequency	F	±0.01 Hz	45.00 Hz-65.00 Hz	IEC61557-12
Active energy	EP	0.5 s	0-99999999 MWh	IEC62053-22
Reactive energy	EQ	2	0-99999999 Mvarh	IEC62053-23
Harmonic ratio of voltage	THDu		0-99.99 %	IEC61557-12
Harmonic ratio of current	THDi	1 (50 Hz)	0-99.9 9%	IEC61557-12
Sub-harmonic voltage component	THDu	5 (60 Hz)	0-99.99 %	IEC61557-12
Sub-harmonic current component	THDi		0-99.99 %	IEC61557-12
Voltage unbalance	Uunb	0.5		IEC61557-12
Current unbalance	lunb	0.5		IEC61557-12
Phase sequence of the mains voltage		0.5		IEC61557-12
Phase position of the mains voltage / mains current		±0.1°		IEC61557-12
Phase sequence of the mains current		0.5		IEC61557-12
Extreme value		0.5		IEC61557-12
Consumption		0.5		IEC61557-12
Temperature	Т	±2° C		

Note:

The following applies to current transformers with an open design or Rogowski coils:

- · Current accuracy 0.5
- · Power accuracy 1.0
- · Active energy class 2

16.3 Technical data of the modules

Protection against foreign matter and water

General			
	806-EC1	806-EI1	806-ED1
Net weight	approx. 82 g (0.18 lbs)	approx. 91 g (0.20 lbs)	approx. 82 g (0.18 lbs)
Device dimensions	Approx. B = 36 mm (1.42 in), H = 90 mm (3.54 in), D = 63.5 mm (2.5 in)		3.54 in),
Mounting orientation	As desired		
Installation - suitable DIN rails - 35 mm (1.38")	According to EN 60715		
Impact resistance	IK04 according to IEC 62262		

Transport and storage The following specifications apply for devices transported and stored in the original packaging.		
Free fall 1 m (39.37 in)		
Temperature	-40 °C (-40 °F) to +85 °C (185 °F)	
Relative humidity	5 to 95 % RH at 77 °F (25 °C), non-condensing	

Environmental conditions during operation		
The device: • For weather-protected and stationary use. • Fulfills operating conditions according to DIN IEC 60721-3-3. • Has protection class II according to IEC 60536 (VDE 0106, part 1), a ground wire connection is not required!		
Rated temperature range	-40 °C (-40 °F) to +70 °C (158 °F)	
Relative humidity	5 to 95 % at 77 °F (25 °C), non-condensing	
Operating elevation	< 2500 m (8200 ft) above sea level	
Pollution degree	2	
Ventilation	No forced ventilation required.	

IP20 according to EN60529

806-EC1 module Ethernet communication module		
Interface	RJ45 (10M)	
Transmission technology	IEE 802.3	
Operating mode	Server	
MAC	IEEE certification	
IP	Static, DHCP	
Protocol	Modbus/TCP, SNMP V2c	
Function	Modbus gateway	
Isolation voltage	1.5 kV AC	

Janitza[®]

Janitza electronics GmbH Vor dem Polstück 6 35633 Lahnau, Germany

Support tel. +49 6441 9642-22 Email: info@janitza.com info@janitza.com | www.janitza.com