
- 1 -

ROBOT ARM HOBBY

© AREXX - THE NETHERLANDS V0610

MOUNTING INSTRUCTIONS: Model RA2-HOBBY

EDUCATIONAL ROBOT

- 2 -

AREXX and ROBOT ARM are registered trademarks of AREXX Engineering - HOLLAND.
© English translation (March 2006): AREXX Engineering (NL).
This manual is protected by laws of Copyright. Any full or partial reproduction of the contents are forbidden with-
out prior written authorization by the European importer. :
AREXX Engineering - Zwolle (NL).

Manufacturer and distributor cannot be held responible for any damage resulting from mishandling, mounting
mistakes or disrespect of the instructions contained in the manual.
Subject to changes without prior notice.

Technical mounting support:

WWW.AREXX.COM

WWW.ROBOTERNETZ.DEManufacturer:
AREXX Engineering
DAGU HI-TECH

European importer:
AREXX Engineering
ZWOLLE The Netherlands

© AREXX Holland and DAGU China
 © English translation: AREXX - The Netherlands

	 1. 	 Product description ROBOT ARM 	 	 3		
	 2.	 Required tools					 5
	 3.	 Part list						 6
	 4. 	 Mounting instructions				 8
	 5.	 Starting the Robot				 22
	 6. 	 Software installation				 23
	 7.	 Programmer and Loader				 36
		 7.1	 Robot loader				 37
		 7.2	 Connection of USB interface Windows	 38
		 7.3	 Connection of USB interface LINUX	 41
		 7.4	 Testing the USB interface		 42
		 7.5	 Opening a port Linux			 43
		 7.6	 Selftest					 44
		 7.7	 Calibration				 46
		 7.8	 Keyboard test				 48
	 8.	 RACS						 49
	 9.	 Programming the ROBOT ARM			 54

	 xx.	 APPENDIX	 (modifications)	 	 	 	
		 A. Circuit diagram Robot Arm			 63	
		 B. Circuit diagram Power Supply			 64		
		 C. Circuit diagram Connectors			 65
		 D. Circuit diagram Keyboard			 66
		 E. PCB						 67
		 F. New PCB					 68
		 G. New PCB					 69

Table of Contents

- 3 -

1. PRODUCT DESCRIPTION ROBOT ARM
The ROBOT ARM is an affordable robot for the hobbyist. It is ideally suited
to learn the basics of electronics, mechanics and programming. The ROBOT
ARM is controlled by a powerful ATMEGA64 microcontroller that is program-
mable via Open Source Tools in C. The user can upload his own programs
simply and easily via the supplied USB interface and the Uploader software.
The I/O in- and outputs together with the flexible I2C bus system allow the ad-
dition of extra modules thus enabling the robot to react to its environment.

Contents of the package:

-	 Complete Robot Arm construction set (mechanics and electronics)
-	 USB interface with lead
-	 CD-ROM containing all required software and manuals

1.2.	 Specifications:

	 -	 ATMEGA64 processor
	 -	 Various available I/O in/outputs
	 -	 I2C bus
	 -	 4 mini-servos
	 -	 2 maxi-servos
	 -	 Plastic arm and metal chassis
	 -	 Arm length: 260 mm
	 -	 Height: 320 mm
	 -	 Base diameter: 150 mm
	 -	 Power supply: 6-12V

* The right of return does not apply after opening the plastic bags containing parts and components.
* Read the manual thoroughly prior to assembling the unit.
* Be careful when handling tools.
* Do not assemble the robot in presence of small children. They can get hurt with the tools
 or swallow small components and parts.
* Check the correct polarity of the batteries.
* Make sure that batteries and holder remain always dry. If the ROBOT ARM gets wet, remove the
 batteries and dry all parts as thoroughly as possible.

 * Remove the batteries if the ROBOT ARM will not be used for more than one week.

Warnings

- 4 -

1.3. What can we do with the Robot Arm?

-	 Transfer example and new programs into the Robot Arm.
-	 Control the Robot Arm via a keyboard
-	 Control and program the Robot Arm via the RACS software.
-	 Extend the Robot Arm with ready-to-use extension modules
	 so that it can hear, feel and see in order to react to its
	 environment
-	 Just as genuine robots can build e.g. cars, this robot can also
	 do some tasks for you.
-	 The Robot Arm can communicate with its environment and
	 many other units via its I2C interface.
-	 Artificial intelligence: The Robot Arm improves its software
	 automatically via its selflearning software.

- 5 -

N e e d l e - n o s e
pliers

Sidecutter

2. Required tools

Screwdriver set

Selftapping screws (Parker)

Selftapping screws behave like wood screws i.e.
they cut a thread into the material in a rotating
motion that functions like a nut. To this end, this type
of screw has a larger thread and a sharper tip as a
normal screw.

Selftapping screws have a cutout at the top
that makes it easier to drill into the material.
The best way to fasten such a screw is:

If the screws are loosened and tightened too often, the hole enlargens gradually
and the screw doesn’t fit anymore properly.

1 Drive the screw into the material
2 Slightly loosen the screw
3 Tighten the screw again

The set includes a double open-end wrench. Use this
wrench for the M2 and M3 nuts.
You can use this wrench instead of pliers.

Double open-end wrench:

Locknut

Locknut

Do not force the screws otherwise
the plastic may crack.

Fastening a locknut

Double open-end
wrench

IncludedIncluded

Screwdriver

1

32

- 6 -

3. PART LIST
Servomotor

O 4 x Mini
O 2 x Maxi

Servo disc

O 4x

O 4x

O 1x

Spacer for Servo Cover for
servo holder

O 2x

Disk with
axis

Holder for
maxi-servo

Servo holder
-dual

O 1xO 1xO 4x

Cover for maxi-
servo holder

O 1xO 2x

Servolever

Spacer
M3x6

Spacer
M3x30

O 1xO 1x

O 4x

Spiral

O 1x

USB leadCD Keyboard

O 1x

- 7 -

Servo holder
for finger servo

O 1x O 1xO 1x

FingertipServo holder
Wrist

Coupling rodServo bottom plate Cover servo holder
Wrist

O 1x

O 1x

O 1x

PCBRobot Arm base

O 1x

Round-head
screw M3x8

Servo screw
small M2x6

O 8x

O 4xO 8x

O 4x

O 4xO 2x

O 4xO 10x
Nut
M3

Round-head screw
M3x10

Selftapping screw
M3.5x8

Selftapping screw
M2.6x6

Selftapping screw
M2.3x8

Locknut M3

Servo screw
large M2.3x6

O 4x

O 1x

Programming
lead

Program
adaptor

O 1x

O 1x

Keyboard lead

O 1x

Servo exten-
sion lead

O 1x

Round-head
screw M3x6

O 8x

- 8 -

4. Mounting instructions for mechanical
parts

Following parts are required:

Mounting the bottom servo:

1x Bottom plate
1x Maxi-servo
4x Round-head screw M3x8
4x Nut M3

Fasten the servo arm on the servo,
see detailed drawing!

Screw M3x8

Maxi-servo

Servo
Bottom plate

M3 Nut

Mounting the servo arm:

Servo arm screw

Following parts are required:
1x Bottom plate with servo
1x Servo arm
1x Servo screw large M2.3x6

Fasten the servo exactly as described in the
drawings.

Servo arm

- 9 -

Locknut

Mounting the bottom servo:

Following parts are required:
1x Bottom part
1x Maxi-servo holder
4x Servo screw small M2x6

Mount the servo axis on the servo. Please refer to the detailed drawing!

Selftapping screw
M2x6

Disc with
axis

Round-head screw M3x8

Maxi-servo holder

Bottom plate

Mount the servo holder on the
servo arm, please look at the
detailed drawing!

Mounting the servo holder:
Following parts are required:

1x Bottom plate with servo
holder
1x Disc with axis
1x Round-head screw M3x8
1x Locknut M3

Servo holder

Bottom plate

- 10 -

Mounting the servo:
Following parts are required:

1x Assembled bottom plate
1x Servo large
1x Servo spacer
4x Round-head screw M3.5x8

Mount the cover exactly as decribed in
the drawing.

IMPORTANT!
Don’t forget the spacer for the
servo!

Servo

Selftapping screw
M3x10

Bottom plate

Screw M3.5x8

Spacer for the
servo

Mounting the cover for the servo holder:
Following parts are required:

1x Assembled bottom plate
1x Servo holder cover
1x Selftapping screw
 M3x10

Cover

Bottom plate

- 11 -

Mounting the servo arm:
Following parts are required:

1x Assembled bottom plate
1x Servo arm
1x Servo screw large M2.3x6

Servo arm

Servo screw
M2.3x6 Bottom plate

Mount the servo arm exactly as described
in the drawing!

Mounting the servo arm:
Following parts are required:

1x Assembled bottom plate
1x Servo coupling rod
1x Servo screw small M2x6
2x Servo screw large M2.3x6

Mount the servo arm exactly as described in the drawing!

Bottom plate

Servo screw
M2x6

Coupling rod

Servo screw
M2.3x6

TEST!
Can the rod rotate freely at
180 degrees?

- 12 -

Mounting the dual servo:

1x Dual servo holder
2x Disc with axis
2x Round-head screw M3 x 8
2x Locknut M3
4x Selftapping screw 2.6x6
1x Cover
3x Selftapping screw 2.3x8
2x Servo disc
2x Servo screw small M2x6

For the final assembly of the dual servo, following parts are required:

Miniservo

Selftapping screw
2.6x6

Cover for dual servo
holder

Locknut M3

Disc with
axis

Dual servo holder

Round-head screw
M3 x 8

Servo disc

Selftapping screw
2.3x8

Dual servo holder
with servos

Dual servo holder
with servos Servo screw

M2x6

Mount the dual servo exactly and in
the same order as described in the
drawing!

- 13 -

Servo holder
wrist

Selftapping screw
2.6x6

Mounting the dual servo holder:
Following parts are required:

1x Assembled bottom plate
1x Dual servo holder
2x Servo screw small M2x6
2x Servo screw large M2.3x6

1x Miniservo
1x Servo holder wrist
2x Selftapping screw M2.6x6

Mounting the wrist servo:
Following parts are required:

Servo screw
M2.3x6

Bottom plate

Miniservo

Mount the wrist servo exactly as described in the drawing.

Mount the dual servo exactly as described
in the drawing.

Servo screw
M2x6

TEST!
Can the dual servo rotate
freely at 180 degrees?

- 14 -

Mounting the wrist cover:
Following parts are required:

1x Assembled wrist
1x Wrist cover
1x Selftapping screw M2.3x8

Servo disc

Cover servo holder
wrist

Servo screw M2x6

Final assembly of the wrist servo:

1x Assembled wrist
1x Servo disc
1x Servo screw small M2x6

Following parts are required:

Mount the cover exactly as described in the
drawing.Assembled wrist

Selftapping
screw 2.3x8

Assembled wrist

Mount the servo disc exactly as described in the drawing.

- 15 -

Mounting the finger servo holder:

Following parts are required:

Mount the finger servo holder exactly as described in the drawing.

Round-head screw
M3x8

Finger servo holder

Locknut M3

Servo disc

Assembled wrist

Mounting the finger servo holder:
Following parts are required:

1x Assembled wrist
1x Finger servo holder
1x Servo disc
1x Screw M3x8
1x Locknut M3

Finger servo holder

Wrist assembly

Mount the servo disc exactly as described in
the drawing.

Servo screw M2x6

1x Assembled wrist
1x Finger servo holder
2x Servo screw small M2x6

TEST!
Can the wrist rotate freely at
180 degrees?

- 16 -

Fasten the servo at the servo holder exactly as
described in the drawing

Mounting the finger servo:
1x Assembled wrist
1x Mini servo
2x Selftapping screw M2.6x6

Following parts are required:

Selftapping screw M2.6x6

Following parts are required:

Mini servo

Mounting the finger servo holder:
1x Assembled Wrist
1x Servo disc
1x Servo screw small M2x6

Servo screw
M2x6

Assembled
wrist

Fasten the disc on the servo
exactly as described in the
drawing

- 17 -

Fasten the wrist on the arm exactly as described in
the drawing.

Mounting the finger:
1x Assembled wrist
1x Finger
2x Servo screw small M2x6
2x Servo screw large M2.3x6

Following parts are required:

Mount the finger exactly as described in the
drawing.

Assembled
Bottom plate

Assembled
wrist

Finger

Servo screw
M2x6

Final arm assembly:
Following parts are required: 1x Assembled wrist

1x Assembled bottom plate
2x Servo screw small M2x6
2x Servo screw large 2.3x6

Servo screw
M2.3x6

Assembled
wrist

Servo screw
M2.3x6

Servo screw
M2x6

TEST!
Can the finger rotate FREELY?

- 18 -

Mounting the base and the PCB:
1x Metal base
4x Spacer M3x6
1x PCB
4x Spacer M3x30

Following parts are required:

Metal base

Spacer M3x6

PCB

Base

Spacer M3x30

- 19 -

Final assembly of the Robot Arm :

Following parts are required:
1x Base assembly
1x ARM assembly
4x Round-head screw M3x6

IMPORTANT!
Complete all the wiring prior to proceeding with these steps. Please refer to the
circuit diagram on page 20.

Round-head screw
M3x6

- 20 -

Terminal assignment on the main PCB

Start
Stop
Reset

I2C

SPI

ON/OFF
switch

Battery terminal

Keyboard

ISP

Servo 6, 5, 4, 3, 2,1

PROGRAMM / UART

Extra I / O

DC socket

Connect the servos via the servo extension leads and use the spiral to run the wires properly.

- 21 -

READY !

- 22 -

5. Starting the Robot
1.	 Start by assembling the mechanical and electronic modules of the
	 Robot Arm via the mounting instructions.
2.	 If necessary, connect the 9V mains adaptor (7- to 12 V max.).
3.	 Switch the robot on via the main On/Off switch.

Voltage supply

Mains adaptor
There are 2 options to power the robot. The easiest solution is to connect a
mains adaptor with an output voltage of 7-12V / 2 Amps to the DC 9V input.
This way, the voltage is connected to the INPUT of the voltage regulator.

Batteries
The second solution is to connect a battery to the battery terminal. This way,
the battery voltage is connected to the OUTPUT of the voltage regulator
and should therefore never exceed 5.5V!! If you use 4 pieces of normal
1.5V mono batteries (‘D’ cells), you should connect a diode in series (in
forward direction) to the positive wire. Even more appropriate would be 4
pieces of the large 1.2V mono D size accumulators.

As soon as the Robot Arm is connected to a power supply, the servos move
slightly and the yellow LED (LED1) lights up.

So, the start was not as difficult as that and it looks as if the job was finished
now. But the real hard work does only start now.....!

But.... let’s look at chapter 6 in which we will install the software

DC terminal
7 to 12 V

Battery terminal
5,5 V MAX !

 WARNING!

The max. voltage that the
RobotLoader is able to
measure is 5.1 V!

- 23 -

6. Software Installation
Let’s do now the software installation. A properly installed software is of para-
mount importance for all following chapters.

As you need administrator rights, you have to log into your system as an admi-
nistrator!

We recommend to read the whole chapter thoroughly first and then start with
the installation step by step.

The user must have basic knowledge of Windows or Linux based computers
and be familiar with current programs such as file managers, web browsers,
text editors, file compression software (WinZip, WinRAR, unzip and others.)
and eventually Linux shell etc.! If your computer knowledge is very limited, you
should learn more about systems before you start using the Robot Arm. This
manual is not intended as an introduction to computers which would go much
too far! It is only aimed at the Robot Arm, its programming and the specific
software required.

The Robot Arm CD-ROM
You have probably already inserted the CD-ROM into your computer drive - if
not, please do it now! In Windows, the CD menu should appear shortly after-
wards per autostart. If not, you can open the file “start.htm” with a web brow-
ser as e.g. Firefox in the main directory of the CD via a file manager. By the
way, the installation files for Firefox are also on the CD in the folder

<CD-ROM drive>:\Software\Firefox

if ever you haven’t installed an updated web browser (it should be at least
Firefox 1.x or Internet Explorer 6 ...)

After the language selection, you will find in the CD menu, in addition to this
manual (that you can also download from our home page), information, data
sheets and pictures also the menu item “Software”. It contains all software
tools, USB drivers and example programs with source code for the Robot Arm.

Depending on the safety settings of your web browser, you can start the instal-
lation programs directly from the CD!

- 24 -

If the safety settings of your web browser don’t allow a direct installation from
the CD-ROM, you have to copy the files first into a directory on your hard
disc and start the installation from there. For more details please refer to the
software page in the CD menu. Alternatively, you can also switch to the CD
drive via a file manager and install the software from the CD. The names of
the directories are self-explanatory so that you can allocate them easily to the
corresponding software packages and operating systems.

WinAVR - for Windows

We will start with the installation of WinAVR. WinAVR is - as the name says -
only available for Windows!

Linux users can skip to the next section.
WinAVR (pronounce like the word “whenever”) is a collection of many useful
and necessary programs for the software development for AVR micro control-
lers in C language. In addition to the GCC for AVR (designated by the term
“AVR-GCC”, more details later) WinAVR includes the convenient source text
editor “Programmers Notepad 2” that we will also use for the program deve-
lopment of the Robot Arm.

WinAVR is a private project that is not supported by a company. It is available
for free in the internet. You will find updated versions and more information at:

http://winavr.sourceforge.net/

In the meantime the project gets the official support from ATMEL and the
AVRGCC is available for AVRStudio, the development environment for AVR’s
from ATMEL. However we will not describe it in this manual as Programmers
Notepad is much better suited for our purpose.
The WinAVR installation file is on the CD in the folder:

<CD-ROM drive>:\Software\AVR-GCC\Windows\WinAVR\

The installation of WinAVR is simple and self-explanatory. Normally you don’t
need to change any settings. So, just click on “Continue”!

- 25 -

If you use Windows Vista or Windows 7, you must install the latest version of
WinAVR! It should also work perfectly with Windows 2K and XP. If not, you
can try one of the older versions that are also on the CD (before you make a
new installation of WinAVR, you have to uninstall the existing version first!).
Officially Win x64 is not yet supported but the CD contains a patch for Win x64
systems if a problem arises. You will find more information on the software
page of the CD menu.

AVR-GCC, avr-libc uad avr-binutils - for Linux

(Windows users can skip this section!)

Linux might require more effort. Some distributions already contain the re-
quired packages but they are mostly obsolete versions. Therefore you need
to compile and install newer versions. It is impossible to describe in detail
the numerous Linux distributions as SuSE, Ubuntu, RedHat/Fedora, Debian,
Gentoo, Slackware, Mandriva etc. that exist in many versions with their own
particularities and we will keep here only to the general lines.

The same applies to all other Linux sections in this chapter!

The procedure described here must not necessarily work for you. It is often
helpful to search in the internet e.g. for “<LinuxDistribution> avr gcc” or similar.
(Try different spellings). The same applies to all other Linux sections - of
course with the suitable keywords! If you encounter problems with the instal-
lation of the AVR-GCC, you can also take a look in our robot network forum or
in one of the numerous Linux forums. First of all, you have to uninstall already
installed versions of the avr-gcc, the avr-binutils and the avr-libc because, as
said, these are mostly obsolete. You can do that via the package manager of
your distribution by searching for “avr” start up and uninstall the three above
mentioned packages - as far as they exist in your computer. You can find out
easily if the avr-gcc has already been installed or not via a console as e.g.

> which avr-gcc

- 26 -

If a path is displayed, a version is already installed. So just enter:

> avr-gcc --version

and look at the output. If the displayed version is smaller than 3.4.6, you have
to uninstall in any case this obsolete version.

If the version number lies between 3.4.6 and 4.1.0, you can try to compile
programs (see following chapter). If it fails, you have to install the new tools.
We will install hereafter the currently most updated version 4.1.1 (status March
2007) together with some important patches.

If the packages above do not appear in the package manager although an
avr-gcc has definitely been installed, you need to erase manually the relevant
binary files- i.e.search in all /bin, /usr/bin etc. directories for files starting with
“avr” and erase these (of course ONLY these files and nothing else!). Eventu-
ally existing directories as /usr/avr or /usr/local/ avr must also be erased.

Important: You have to make sure that the normal Linux development tools
as GCC, make, binutils, libc, etc. are installed prior to compiling and installing!
The best way to do so is via the package manager of your distribution. Every
Linux distribution should be supplied with the required packages on the instal-
lation CD or updated packages are available in the internet.

Make sure that the “texinfo” program is installed. If not, please install the rele-
vant package before you continue - otherwise it will not work!

Having done that, you can start with the installation itself.

Now you have two options: either you do everything manually or you use a
very simple to use installation script.

We recommend to try the installation script first. If this doesn’t work, you can
still install the compiler manually.

- 27 -

Attention:
You should have enough free disk space on your hard disk! Temporarily more
than 400Mb are required. Over 300Mb can be erased after the installation but
during the installation, you need all the space.

Many of the following installation steps require ROOT RIGHTS, so please log
in with “su” as root or execute the critical commands with “sudo” or something
similiar as you have to do it in Ubuntu e.g. (the installation script, mkdir in /usr/
local directories and make install require root rights).

Please note in the following the EXACT spelling of all commands!
Every sign is important and even if some commands look a bit strange, it is all
correct and not a typing mistake! (<CD-ROM-drive> has of course to be repla-
ced by the path of the CD-ROM drive!)

The folder on the CD:

<CD-ROM drive>:\Software\avr-gcc\Linux

contains all relevant installation files for the avr-gcc, avr-libc and binutils.
First of all, you have to copy all installation files in a directory on your hard disk
- this applies for both installation methods! We will use the Home directory
(usual abbreviation for the current home directory is the tilde: „~“):

> mkdir ~/Robot Arm
> cd <CD-ROM drive>/Software/avr-gcc/Linux
> cp * ~/Robot Arm

After the successful installation you can erase the files to save space!

- 28 -

Automatic Installation Script

Once you have made the script executable via chmod, you can start
immediately:

> cd ~/Robot Arm
> chmod -x avrgcc_build_and_install.sh
> ./avrgcc_build_and_install.sh

Answer “y” to the question if you want to install with this configuration or not.

PLEASE NOTE: The compilation and installation will take some time depen-
ding on the computing power of your system (e.g about 15 min. on a 2GHz
Core Duo Notebook. Slower systems will need longer).

The script will include also some patches. These are all the .diff files in the
directory.
If the installation was successful, following message will be displayed:

(./avrgcc_build_and_install.sh)
(./avrgcc_build_and_install.sh) installation of avr GNU tools complete
(./avrgcc_build_and_install.sh) add /usr/local/avr/bin to your path to use the avr GNU tools
(./avrgcc_build_and_install.sh) you might want to run the following to save disk space:
(./avrgcc_build_and_install.sh)
(./avrgcc_build_and_install.sh) rm -rf /usr/local/avr/source /usr/local/avr/build

As suggested, you can execute
rm -rf /usr/local/avr/source /usr/local/avr/build
This erases all temporary files that you will not need anymore.

You can skip the next paragraph and set the path to the avr tools.

If the execution of the script failed, you have to look attentively to the error
message (scroll the console up if necessary). In most cases it is just a matter
of missing programs that should have been installed earlier (as e.g. the before
mentioned texinfo file). Before you continue after an error, it is recommended
to erase the already generated files in the standard installation directory “/usr/
local/avr“ – preferably the whole directory.

- 29 -

If you don’t know exactly what has gone wrong, please save all command line
outputs in a file and contact the technical support. Please join always as much
information as possible. This makes it easier to help you.

GCC for AVR

The GCC is patched, compiled and installed a bit like the binutils:

> cd ~/Robot Arm> bunzip2 -c gcc-4.1.1.tar.bz2 | tar xf -
> cd gcc-4.1.1
> patch -p0 < ../gcc-patch-0b-constants.diff
> patch -p0 < ../gcc-patch-attribute_alias.diff
> patch -p0 < ../gcc-patch-bug25672.diff
> patch -p0 < ../gcc-patch-dwarf.diff
> patch -p0 < ../gcc-patch-libiberty-Makefile.in.diff
> patch -p0 < ../gcc-patch-newdevices.diff
> patch -p0 < ../gcc-patch-zz-atmega256x.diff
> mkdir obj-avr
> cd obj-avr
> ../configure --prefix=$PREFIX --target=avr --enable-languages=c,c++ \
--disable-nls --disable-libssp –with-dwarf2
> make
> make install

After the \ just press Enter and continue to write. This way the command can
be spread over several lines, but you can also just drop it.

AVR Libc

And last but not least the AVR libc:

> cd ~/Robot Arm
> bunzip2 -c avr-libc-1.4.5.tar.bz2 | tar xf -
> cd avr-libc-1.4.5
> ./configure --prefix=$PREFIX --build=`./config.guess` --host=avr
> make
> make install

- 30 -

Important: at –build=`./config.guess` make sure to put a backtick ` (à <-- the
grave accent on the a!) and not a normal apostrophy or quotation marks as
this wouldn’t work.

Set the Path

You must make sure now that the directory /usr/local/avr/bin is registered in
the path variable otherwise it will be impossible to retrieve the avr-gcc from the
console or from the makefiles. To that end, you have to enter the path in the
file /etc/profile or /etc/environment or similiar (varies from one distribution to
another) – separated by a colon “:” from the other already existing entries. It
could look in the file like:

PATH=”/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/usr/local/avr/bin“

Now enter in a console “avr-gcc -–version“ as described above. If it works, the
installation was successfull!

- 31 -

Manual Installation

If you prefer to install the compiler manually or the installation via th script
failed, you can follow the instructions below.

The description is based on following article:

http://www.nongnu.org/avr-libc/user-manual/install_tools.html

that is also included on the CD in PDF format in the AVR Libc documentation:

<CD-ROM drive>:\Software\Documentation\avr-libc-user-manual-1.4.5.pdf

Our description here is much shorter but includes a few important patches.
Without these, some tings will not work properly.

First of all we have to create a directory in which we wil install all tools. That
should be /usr/local/avr.
Also enter in a console AS A ROOT:

> mkdir /usr/local/avr
> mkdir /usr/local/avr/bin

It must not necessarily be this directory. We just create the variable $PREFIX
for this directory:

> PREFIX=/usr/local/avr
> export PREFIX

This must be added into the PATH variable:

> PATH=$PATH:$PREFIX/bin
> export PATH

- 32 -

Binutils for AVR

Now you must unpack the sourcecode of the binutils and add a few patches.
We suppose in our example that you have copied everything into the home
directory ~/Robot Arm:

> cd ~/Robot Arm
> bunzip2 -c binutils-2.17.tar.bz2 | tar xf -
> cd binutils-2.17
> patch -p0 < ../binutils-patch-aa.diff
> patch -p0 < ../binutils-patch-atmega256x.diff
> patch -p0 < ../binutils-patch-coff-avr.diff
> patch -p0 < ../binutils-patch-newdevices.diff
> patch -p0 < ../binutils-patch-avr-size.diff
> mkdir obj-avr
> cd obj-avr

Now execute the configure script:

> ../configure --prefix=$PREFIX --target=avr --disable-nls

This script detects what is available in your system and generates suitable
makefiles. Now the binutils can be compiled and installed:

> make
> make install

Depending on the computing power of your system, this can take a few minu-
tes. That applies also to the next two sections, especially to the GCC!

Java 6

The RobotLoader (see Info below) has been developed for the Java platform
and is suitable for Windows and Linux (theoretically also for operating systems
like OS X but AREXX Engineering is unfortunately not yet in a position to give
official support). To make it work, you need to install an updated Java Runtime
Environment (JRA). It is often already installed on the computer but it must be
at least version 1.6 (= Java 6)! If you have no JRE or JDK installed, you must
install the supplied JRE 1.6 from SUN Microsystems or alternatively download a
newer version from http://www.java.com or http://java.sun.com.

- 33 -

Windows

The JRE 1.6 for Windows is in following folder:

<CD-ROM drive>:\Software\Java\JRE6\Windows\

Under Windows the installation of Java is very simple. You just have to start
the setup and follow the instructions on the screen - that’s it. You can skip the
next paragraph.

Linux

Under Linux the installation doesn’t present any major problems although
some distributions require some manual work.

In the folder:

<CD-ROM drive>:\Software\Java\JRE6\

you will find the JRE1.6 as an RPM (SuSE, RedHat etc.) and as a
self-extracting archive “.bin“. Under Linux it is advisable to look for Java
packages in the package manager of your distribution (keywords e.g. „java“,
„sun“, „jre“, „java6“ ...) and use the packages of your distribution rather than
those on the CD-ROM! However make sure to install Java 6 (=1.6) or a newer
version but definitely not an older one!

Under Ubuntu or Debian, the RPM archive doesn’t work directly. You will have
to use the package manager of your distribution to find a suitable installation
package. The RPM should however work well with many other distributions
like RedHat/Fedora and SuSE. If not, you always have the solution to unpack
the JRE (e.g. to /usr/lib/Java6) from the self-extracting archive (.bin) and set
manually the paths to the JRE (PATH and JAVA_HOME etc.).

Please refer to the installation instructions from Sun that you will find also in
the above mentioned directory and on the Java website (see above).

- 34 -

You can check if Java has been correctly installed by entering the command
“java-version” in a console. The output should be approximately as follows:

java version “1.6.0”
Java(TM) SE Runtime Environment (build 1.6.0-b105)
Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode, sharing)

If the output is totally different, you have either installed the wrong version or
there is another Java VM installed in your system.

Robot Loader

The Robot Loader has been developed to load easily new programs and all
extension modules into the Robot Arm (as long as the modules are fitted with
a compatible bootloader). Moreover it contains a few useful extra functions as
e.g. a simple terminal program.

It is not necessary to install the RobotLoader. Just copy the program some-
where in a new folder on the hard disk.

<CD-ROM drive>:\Software\RobotLoader\RobotLoader.zip

Unpack the program somewhere on your hard disk e.g. in a new folder C:\
Programme\RobotLoader (or similiar). This folder contains the
RobotLoader.exe file that you can start with a double-click.

The Robot Loader program itself is in the Java archive (JAR) RobotLoader_lib.
jar. Alternatively you can start this via the command line:

Under Windows:

java -Djava.library.path=”.\lib” -jar RobotLoader_lib.jar

Linux:

java -Djava.library.path=”./lib” -jar RobotLoader_lib.jar

- 35 -

The long -D option is necessary to enable the JVM to find all used libraries.
Windows doesn’t require this and you can just start with the .exe file. Linux
requires the shell script ”RobotLoader. sh“. It might be necessary to make the
script executable (chmod -x ./RobotLoader.sh). After that you can start it in a
console with “./RobotLoader.sh“.

It is advisable to create a shortcut on the desktop or in the start menu to make
the start of the Robot Loader more convenient. Under Windows make a right
click on the RobotLoader file.exe and then click on “Desktop (create shortcut)”
in the “Send to” menu.

Robot Arm Library, Robot Arm CONTROL Library and Example Programs

The Robot Arm Library and the related example programs are in a zip archive
on the CD:

<CD-ROM drive>:\Software\Robot Arm Examples\Robot ArmExamples [MINI].zip

Just unpack them directly into a directory at your convenience on the hard
disk. It is recommended to unpack the example programs into a folder on a
data partition. Or in the “My files” folder in a sub-folder “Robot Arm\Examples\“
or else under Linux into the Home directory. It’s entirely up to you.

The individual example programs will be discussed later in the software
chapter!

- 36 -

7. Programmer and Loader

To load a HEX Robot Arm program from the PC into the Robot Arm, we will
use the USB programming adaptor and our RobotLoader software.

The loose USB port adaptor transmitter/receiver (transceiver) included in the
package must be connected on one side to a USB port of the computer and
on the other side to the Prog/UART port of the Robot Arm PCB.

The program upload into the Robot Arm erases automatically the previously
existing program.

USB Programming adaptor

RobotLoader software

- 37 -

7.1. Robot Loader

As said, the RobotLoader has been developed to upload easily new programs
into the Robot Arm and into all our robots (provided that they contain a compati-
ble bootloader).

RobotLoader

If the voltage
drops below
< 4.4 V,
a warning is
displayed.

Other useful extra functions are built-in such as a simple terminal program.

Terminal window

The RobotLoader itself doesn’t need to be installed. Just copy the program
somewhere in a new folder on the hard disk.

- 38 -

7.2. Connection of the USB interface – Windows
Linux users can skip to the next section!

There are several options to install the USB interface, the easiest being the
installation of the driver BEFORE the first connection of the hardware.

The CD contains an installation program for the driver.

For 32 and 64 Bit Windows 7, XP, Vista, Server 2003 and 2000 systems:

<CD-ROM drive>:\Software\USB_DRIVER\Win2k_XP\CDM_Setup.exe

For old Win98SE/Me systems, such a handy program does unfortunately
not exist. You need to install an older driver manually after connecting the
equipment (see below).

Just execute the installation program. There will just be a short note that the
driver has ben installed and that’s all.

Now you can connect the USB interfac to the PC. PLEASE DO NOT
CONNECT TO THE ROBOT YET! Just connect to the PC via the USB lead.
Please touch the PCB of the USB interface only at the edges or at the USB
plug or at the plastic shell of the programming plug (see safety instructions on
static discharges)! Please avoid touching any of the components on the PCB,
soldering points or contacts of the IDE connector unless absolutely necessary
in order to prevent static discharges!

The previously installed driver will be used automatically for the device without
any help from your side. Under Windows XP/2k small speech bubbles appear
at the bottom above the task bar. The last message should be “The device has
been successfully installed and is ready for use!”.

If you have connected the USB interface before the installation (or use
Win98/Me) – it doesn’t matter so much. Windows will ask you for a driver. This
installation method is also possible. The driver is also in unpacked format on
the CD.

- 39 -

If you are in this situation, a dialogue appears (under Windows) to install the
new driver. You have to indicate the path to the system where it can find the
driver. Under Windows 2k/XP you need to select first the manual installation
and not to look for a web service. On our CD the driver is in the above men-
tioned directories.

So, just indicate the directory for your Windows version and eventually a few
other files that the system doesn’t find automatically (they are all in the directo-
ries mentioned below!) ...

Under Windows XP and later versions there is often a message that the FTDI
drivers are not signed/verified by Microsoft (normally not here as the FTDI dri-
vers are signed). This is irrelevant and can be confirmed without any problem.

Operation

For 32 and 64 Bit Windows 7, XP, Vista, Server 2003 and 2000 systems:

<CD-ROM drive>:\Software\USB_DRIVER\Win2k_XP\FTDI_CDM2\

For older Windows 98SE/Me systems:

<CD-ROM drive>:\Software\USB_DRIVER\Win98SE_ME\FTDI_D2XX\

After the installation of the driver a re-start of the computer may be necessary with ol-
der versions like Win98SE! PLEASE NOTE: Under Win98/Me only one of both drivers
is working: Either Virtual Comport or the D2XX driver from FTDI! Unfortunately there is
no driver that offers both functions. Normally there is no virtual comport available as the
RP6Loader under Windows uses as a standard the D2XX drivers (you can change this
- please contact our support team!).

Check the Connection of the Device

To check if the device has been correctly installed you can use the device
manager as an alternative to the RobotLoader under Windows XP, 2003 and
2000: Right click on My Computer --> Properties --> Hardware --> Device
manager

- 40 -

OR alternatively: Start --> Settings --> Control panel --> Performance and
Maintenance --> System --> Hardware --> Device manager and check there
in the tree view under “Connections (COM and LPT)” if you find a “USB-Serial
Port (COMX)” - the X replacing the port number, or look under “USB serial
bus controller“ for a “USB Serial Converter“ !

If you wish to uninstall the driver some day

If ever you wish to uninstall the driver (no, not now - this is just a hint if you
need this some day): If you have used the CD ROM installation program, you
can uninstall it directly via Start --> Settings --> Control panel --> Software. In
the displayed list you will find an item “FTDI USB Serial Converter Drivers“ –
select it and click on “uninstall”.

If you have installed the driver manually, you can execute the program
““FTUNIN.exe” in the directory dedicated to the USB driver for your system!
Warning: USB-->RS232 adaptors with FTDI chip set often also use this driver!

- 41 -

7.3. Connection of the USB Interface – Linux
Windows users can skip this section!

Linux systems with kernel 2.4.20 or higher already include the required driver
(at least for the compatible previous model FT232BM of the chip on our USB
interface, the FT232R). The hardware is automatically recognized and you
have nothing else to do. In case of a problem, you can get Linux drivers (and
support and maybe also newer drivers) directly from FTDI:

http://www.ftdichip.com/

Once the hardware has been connected, you can check under Linux via:

cat /proc/tty/driver/usbserial

if the USB serial port has been correctly installed. This is normally all you have
to do.

It is worth to mention that the Robot Loader uses under Windows D2XX dri-
vers and the full USB designations appear in the port list (e.g. ”USB0 | Robot
USB Interface | serialNumber“). Whereas under Linux the virtual comport
designations appear such as /dev/ttyUSB0, /dev/ttyUSB1 etc.. The normal
com ports are equally displayed as “dev/ttyS0“ etc.. In this case you have to
try which port is the correct one!

Unfortunately Linux doesn’t have such a convenient driver that does both.
Therefore it made more sense to use the Virtual Comport drivers that are
included in the kernel anyway. The installation of a D2XX driver would require
quite a lot of manual work....

Finalization of Software Installation

Now the installation of the software and the USB interfaces is completed! You
just need to copy the most important files from the CD on a hard disk
(especially the complete “Documentation” folder and, if it hasn’t been done
yet, the example programs). This avoids to look constantly for the CD if you
need these files. The folders on the CD are all named in such a way that they
can be easily allocated to the relevant software packages or documentation!

If you “loose” the CD one day, you can download the most important files as this manual, the RobotLoa-
der and the example programs from the AREXX home page. You will find there also the links to the other
software packages that you require.

- 42 -

7.4. Testing the USB Interface and
starting the RobotLoader

The next step is a test of the program upload via the USB interface. Connect
the USB interface to the PC (always connect the PC first!) and the other end
of the 10-pin ribbon cable to the “PROG/UART” connector on the Robot Arm.
(Robot Arm MUST BE SWITCHED OFF!) The 10-pin ribbon cable is mechani-
cally protected against polarity inversion. As long as it is not forced, it can’t be
connected the wrong way round.

Once you have selected your language, you have to re-start the Robot Loader
to validate the changes!

Open a port - Windows

If more ports exist, you can identify the port via the name “Robot USB Inter-
face“ (or „FT232R USB UART“). Behind the port name the programmed serial
number is displayed.

If no ports are displayed, you can refresh the port list via the menu item “Robot-
Loader-->Refresh Portlist“ !

			
	 WARNING!

If the voltage drops below < 4,4 V, a warning is displayed.
The maximum voltage that the RobotLoader can measure, is 5.1V!

Then start the RobotLoader. Depending
on which language you have selected, the
menus might have a bit different names. The
screen shots show the English version. Via
the menu item “Options->Preferences“ you
can select under “Language /Sprache“ the
required language (English or German) and
then click on OK.

Select the USB port. As long as no other
USB->Serial Adaptor with FTDI controller
is connected to the PC, you will see only
one single entry that you have to select.

- 43 -

7.5. Open a port – Linux
Linux handles the USB serial adaptor like a normal comport. The installation of
the D2XX driver from FTDI would not be as simple as that under Linux and the
normal virtual comport (VCP) drivers are included anyway in the current Linux
kernels. It works almost the same as under Windows. You just need to find out
the name of the Robot Arm USB interface and make sure that the USB port
is not unplugged from the PC as long as the connection is open (otherwise
you might have to re-start the RobotLoader to re-connect). Under Linux the
names of the virtual comports are “/dev/ttyUSBx“, x being a number e.g. “/dev/
ttyUSB0“ or “/dev/ttyUSB1“. The names of the normal comports under Linux
are “/dev/ttyS0“, „/dev/tty- S1“ etc.. They also show up in the port list as far as
they exist.

The RobotLoader remembers - if there are several ports - which port you have
used last time and selects this port automatically when you start the program
(in general, most of the settings and selections are maintained).

Now you can click on the button “Connect“! The RobotLoader will open the
port and test if the communication with the bootloader on the robot is working.
The black field “Status” on the bottom should show the message
“Connected to: Robot Arm ...” or similiar together with an information about the
currently measured voltage. If not, just try again! If it still doesn’t work, there is
a mistake! Switch the robot off immediately and start searching for the error.

If the voltage is too low, a warning is displayed. You should immediately
charge the accumulators (preferably even earlier when the voltage drops
below 4.0V)!

- 44 -

7.6. SELFTEST
The yellow voltage LED lights up when the Robot Arm is switched on.

The status LED goes off when a HEX file is uploaded. As soon as a program
is started, the status LED lights up in red. In the robot status “Ready”, the
same LED lights up in green.

If this worked, you can execute a small selftest program to test the functio-
ning of all robot systems. Please click on the button “Add” on the bottom
of the Robot Loader window and select the file RobotArmExamples [MINI],
„Example_11_Selftest\RobotArm_Selftest.hex“ in the example directory. This
file contains the selftest program in hexadecimal format - that’s why this kind
of program file is called “hex file”. The file just selected appears afterwards
in the list. This way you can add other hex files from your own programs and
from the examples programs (see screen shot where some hex files have
already been added). The Robot Loader is able to manage several categories
of hex files.

This allows to sort the files in a clear way e.g. if several programmable ex-
tension modules are mounted on the robot or different program versions are
used. The list is automatically saved at the end of the program. Of course only
the paths to the hex files are saved, not the hex files themselves. If you work
on a program, you just need to add and select the hex file once. Then you can
load the new program into the microcontroller after every re-compiling of the
program. (you can also use the key combination [STRG+D] or [STRG+Y], to
start the program directly after the transfer). The path names are of course
totally different under the various operating systems. Nevertheless the Ro-
botLoader suits both, Windows and Linux, without any changes, as there is a
separate list for Windows and Linux.

Either you continue now with the other example programs (Examples) of the
Robot Arm or else you start with your own software programming.

WARNING!

If the voltage drops below < 4,4 V, a warning is displayed.
The maximum voltage that the RobotLoader is able to measure, is 5.1 V!

- 45 -

Please select the “RobotArm_Selftest.hex“ file in the list and click on the “Up-
load!“ button on the top right just below the progress bar.

The program will now be transferred into the MEGA64 processor on the Robot
Arm. This should not take more than a few seconds (max. 5 seconds for the
selftest program).

Switch to the tab (at the bottom of the window!) “Terminal“! Alternatively you
can also switch to terminal via the menu item “View”.

Now you can execute the selftest and the calibration of the Robot Arm. Press
the switch Start/Stop Reset on the Robot Arm to start the program. Later
you can do this alternatively via the RobotLoader menu --> Start or the key
combination [STRG]+[S]. However this time you can test if the switch works
properly!

If an error occurs in the selftest, switch the robot off immediately and start
searching for the mistake.

IT IS RECOMMENDED TO START WITH THE CALIBRATION
OF THE ROBOT ARM! SEE PAGE 46.

- 46 -

7.7. Calibration
Start the calibration program to calibrate the robot.

To this end, please click on the button “Add” at the bottom of the RobotLoader
window and select the file RobotArmExamples [MINI], „Example_11_Selftest\
RobotArm_Selftest.hex“ in the example directory.

This file contains the selftest program in hexadecimal format. The just selected
file will appear subsequently in the list (see screenshot).

Select C
(C - Calibrate) in the
calibration program to
start calibration.

					 Bring all servomotors into central
					 position so that the Robot Arm looks
					 like on page 47.
					 The servomotors 2-6 are
					 approximately in a central position
					 and the finger (servo 1) is almost
					 closed.

Once the calibration (C - Calibrate) is completed, the robot can execute
following selftest. The result of the calibration is saved in ATMEGA.

- 47 -

Calibration position

Servo 1
Finger

Servo 2
Rotate wrist

Servo 5
Shoulder

Servo 4
Elbow

Servo 3
Bend wrist

Servo 6
Base (azimuth)

- 48 -

7.8. Keyboard Test
The set is supplied with a keyboard that can be connected to the Robot Arm.
It is a good option for simple demonstrations and allows us to practice the
control of a robot arm via a keyboard.

The keyboard is fitted with 6 control keys and 4 special keys for later
extensions.

If we want to test the Robot Arm via the keyboard, we need to transfer the ap-
propriate hex program into the robot’s microprocessor.

Please click on the button “Add” on the bottom of the RobotLoader window
and select the file RobotArmExamples, “RobotArm_Key_Board.hex“ in the
example directory.

Select the file „RobotArm_Key_Board.hex“ in the list and press subsequently
the “Upload!“ button on the top right side below the progress bar.

Having done that, you can control the Robot Arm simply via the keys on the
keyboard.

Keyboard lead

PCB Keyboard

- 49 -

8.0. RACS Software
RACS (Robot Arm Control Software) is the easiest way to control and program
the Robot Arm. Programming via the RACS method requires the RobotLoader
software and the USB programming adaptor.

Prior to using the robot, you need to upload the HEX software RAC-MINI.hex
into the Flash memory of the processor.

Connect the programming/control lead to the USB port on your computer and
start the Loader software. Following user interface is displayed:

 Fig. 1

If no USB port appears in the list “Step 1: Select a port”, make sure that the
lead is connected and the programmer’s drivers are installed. You can recall
the port list via the menu:
RobotLoader -> Refresh port list. Select the port and click on “Connect”.

Select the appropriate .hex file in step 2

– Click on “Add”: RAC-MINI.HEX

- 50 -

In step 3 click on the button “Upload” to import the file.

If you want to operate the Robot Arm, you have to disconnect the
RobotLoader in Step 1 by clicking on the button “Close”. If you close the
program, the connection is automatically interrupted.

Please make sure that there is no connection between the Loader software
and the Robot Arm, otherwise the robot can’t be controlled via the RACS
software.

7.1. RACS Instruction Manual

The Robot Arm can be controlled very easily via the RACS software. A link is
established between the programming/control lead and then the motors of the
Robot Arm react to the slider positions set via the mouse. The current
positions can be saved, changed and erased in the list box in the lower part of
the user interface. This generates a list containing the individual positions that
can be saved as a file on the computer by clicking on the button “Save”. This
step list can be uploaded any time.

Important !!! The robot monitors the motor current of every individual
servomotor. If the threshold of a servo is exceeded - e.g. during a col-
lision or overload - the text in the RACS software starts flashing. In this
case, the robot must be driven back to its last position as quickly as
possible or the servopower in the RACS software must be disabled (di-
sable the checkbox “servopower”).

Otherwise the Robot Arm might be definitely
damaged!!!

- 51 -

7.2. RACS - Connection

1.	 Double-click on the Robot Arm Control Software to start it,
 	 following interface is displayed:

	 Fig. 2

2.	 In the dropdown menu are listed all serial interfaces

	 Fig. 3

3.	 Plug in the USB programmer

4.	 Click on Update button. When you look again that the dropdown
	 menu, you will see an additional interface. This interface has been
	 initialized by plugging in the USB programmer.

Attention: The name of the interface differs from one computer to the
other!

- 52 -

5.	 Select the new interface

	 	 Fig. 4

6.	 Enable the checkbox “Connect”

		 Fig. 5

7.	 Enable the checkbox “servo power”

		 Fig. 6

8.	 Move the slider to control the servos.
	 If an error occured during the establishment of the connection,
	 following window appears. The connections must be established
	 again (repeat steps 2-6 and check the interface).

		 Fig. 7

- 53 -

7.3. RACS – Automated Position Control
Following controls are available in the window below:

Add:		 this button adds the current slider position to the list

Replace:	 the selected list item will be replaced by the current slider
		 positions

Insert:		 the current slider positions will be inserted above the selected
		 list item

Clear:		 the selected list item will be erased

Save:		 the list items will be saved in a file

Load:		 the list items are uploaded from a file
		 (Caution, the current list items will be erased!)

Run:		 The list items are processed in sequence starting at the top.
		 If the “Repeat” option has been enabled, the Robot Arm will
		 keep processing all items continuously.

Step Time:	 The step time defines how long (in seconds) the robot will wait
		 until it processes the next item in the list. If the list contains only
		 very short travels, the selected time may be short. If, on the
		 contrary, very long travels have been programmed e.g. full
		 180° servo motions, the selected time must be set longer as the
		 robot will not reach its target position and will proceed
		 prematurely to the next step item.

Pause:		 The process is paused
Stop:		 The process is stopped

- 54 -

8.0. Programming the Robot Arm
Now we are gradually coming to the programming of the robot.

Setting up the source text editor
First of all, we need to set up a little development environment. The so-called
“source text” (also called “sourcecode”) for our C program must be fed into our
computer one way or the other!

To this end, we will definitely not use programs like OpenOffice or Word! As
this might not be obvious for everybody, we stress it here explicitly. They are
ideally suited to write manuals like this one, but they are totally inappropriate
for programming purposes. Source text is pure text without any formatting.
The compiler is not interested in font size and colour...

For a human being, it is of course much clearer if some keywords or kinds of
text are automatically highlighted by colours. These functions and some more
are contained in Programmers Notepad 2 (abbeviated hereafter by “PN2”) that
is the source text editor that we will use (ATTENTION: Under Linux you need
to use another editor that offers about the same functions as PN2. Usually,
several editors are pre-installed! (e.g. kate, gedit, exmacs or similiar)). In ad-
dition to the highlighting of keywords and others (called “syntax highlighting”) it
offers also a rudimentary project management. This allows to organise several
source text files in projects and to display in a list all files related to a project.
Moreover you can easily retrieve programs like the AVR-GCC in PN2 and get
the programs conveniently compiled via a menu item. Normally the AVR-GCC
is a pure command line program without graphic interface...

You will find more recent versions of Programmers Notepad on the
project homepage: http://www.pnotepad.org/

The newest versions of WINAVR don’t require the setting up of menu
items anymore!

PLEASE NOTE:
In this section we don’t describe anymore how you have to set up menu
items in PN2 as the newest WINAVR versions have done this already for
you!

- 55 -

See on page 56 “Open and compile an example project” how you can
open an example project!

If you have opened an example project, it should look a bit like this on the PN2
screen:

“Robot ArmExamples.ppg“ file.
This is a project group for PN2
that uploads all example programs
plus the Robot Arm Library into the
project list (“Projects“) .

On the left hand side are shown all example projects, on the right hand side
the source text editor (with the mentioned syntax highlighting) and at the
bottom the tools output (in this case the output of the compiler).
You can convert many other things in PN2 and it offers many useful features.

- 56 -

Open and compile an example project

Now all example projects are conveniently at hand if you want to refer to them
at the beginning or look for functions in the Robot Arm Library etc..

Open the first example program on top of the list (“01_Leds“ and select file
“01_Leds“) that appears on the left edge of the program window! Just double-
click on “01_Leds.c“! A source text editor is displayed in a window inside the
program.

An output area should appear on the bottom of the program window of PN2. If
not, you have to enable this area via the “View” menu --> “Enable output” OR
if the area is too small, increase the size by pulling the edges with the mouse
(the mouse cursor changes into a double arrow at the upper edge of the grey
area marked “output” at the bottom of the program window...).

You can take a quick look at the program that you just opened with the source
text editor but you don’t need to understand right now what is happening
exactly. However as a first info: The green text are comments that are not
part of the actual program. They are only used for description/documentation
purposes.

Let’s test now if everything runs properly
and open the example projects:

Select in the “File“ menu the item “Open
Project(s)“.

A normal file section dialogue appears.
Search the folder “Robot Arm_Examples
[MINI]\“ in the folder into which you have
saved the example programs.

Open the “Robot ArmExamples.ppg“
file. This is a project group for PN2 that
uploads all example programs as well as
the Robot Arm Library into the project list
(“Projects“).

- 57 -

We will explan this in detail a bit further down (there is also a version of this
program WITHOUT comments so that you can see how short the program is
in fact. The comments inflate it a lot but are necessary for the understanding.
The uncommented version is also useful to copy the code in your own pro-
grams!).

PN2 retrieves now the above mentioned “make_all.bat“ batch file. This will on
its turn retrieve the program “make“. More info about “make“ will follow later.

The example program will now be compiled. The generated hex file contains
the program in the translated format for the microcontroller and can be uploa-
ded and executed later. The compilation process generates a lot of temporary
files (suffixes like “.o, .lss, .map, .sym, .elf, .dep“). Just ignore them. The newly
set up tool “make clean” will erase them all. Only the hex file is of interest for
us. By the way, the function “make clean” will not erase this file.

First of all we just want to test if the compi-
lation of programs works properly.

In the Tools menu on top both freshly instal-
led menu items (see fig.) should appear (or
the [WinAVR] inputs existing as a standard
in PN; whatever, it works normally with
both).

Please click now on “MAKE ALL“!

- 58 -

After the activation of the menu item MAKE ALL, following output should
display (below in a considerably shortened version! Some lines may look of
course a bit different):

> “make.exe” all
-------- begin --------
avr-gcc (WinAVR 20100110) 4.3.3
Copyright (C) 2008 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Size before:
AVR Memory Usage

Device: atmega64
Program: 3074 bytes (4.7% Full)
(.text + .data + .bootloader)
Data: 68 bytes (1.7% Full)
(.data + .bss + .noinit)
EEPROM: 14 bytes (0.7% Full)
(.eeprom)

Compiling C: Robot Arm_Leds.c
avr-gcc -c -mmcu=atmega64 -I.
-gdwarf-2 -DF_CPU=16000000UL -Os -funsigned-char -funsigned-bitfields -fpack-
struct -fshort-enums -Wall
-Wstrict-prototypes -Wa,-adhlns=./Robot Arm_Leds.lst -std=gnu99 -MMD -MP -MF
.dep/Robot Arm_Leds.o.d Robot Arm_Leds.c -o Caterpillar_Leds.o

Linking: Robot Arm_Leds.elf
avr-gcc -mmcu=atmega16 -I. -gdwarf-2 -DF_CPU=16000000UL -Os -funsigned-char -funsigned-
bitfields
Creating load file for Flash: Robot Arm_Leds.hex
Creating load file for EEPROM: Robot Arm_Leds.eep
avr-objcopy -j .eeprom --set-section-flags=.eeprom=”alloc,load” \
	 --change-section-lma .eeprom=0 --no-change-warnings -O ihex Robot Arm_Leds.elf
Robot Arm_Leds.eep || exit 0
Size after:
AVR Memory Usage

Device: atmega64
Program: 3074 bytes (4.7% Full)
(.text + .data + .bootloader)
Data: 68 bytes (1.7% Full)
(.data + .bss + .noinit)

EEPROM: 14 bytes (0.7% Full)
(.eeprom)
-------- end -------->
Process Exit Code: 0
> Time Taken: 00:04

- 59 -

The “Process Exit Code: 0“ at the end is most important. It means that no error
occurred during compilation. If another code appears there, the sourcecode
contains an error that must be corrected before it will work. In this case, the
compiler will output various error messages that give some more information.

Please note however that the “Process Exit Code: 0“ is not a guarantee of a
fully error-free program! The compiler will not find flawed thinking in your pro-
gram and it can’t prevent the robot from running into a wall ;-)

IMPORTANT: You might find warnings and other messages further above.
These are often very helpful and always indicate important problems! That’s
why these always need to be solved. PN2 highlights warnings and errors by
colours to make the identification easier. Even the line number is indicated
that the compiler is criticizing. If you click on the coloured error message, PN2
skips in the relevant editor directly to the faulty line.

The indication at the end “AVR Memory Usage“ is also very useful.

Size after:
AVR Memory Usage

Device: atmega64

Program: 3074 bytes (4.7% Full)
(.text + .data + .bootloader)

Data: 68 bytes (1.7% Full)
(.data + .bss + .noinit)

This means for the Atmega64 processor that our program has a size of 3074
bytes and that 68 bytes of RAM are reserved for static variables (you have to
add to this the dynamic ranges for heap and stack but this would go too far...
just keep always at least a few hundred bytes of memory free). We dispose in
total of 64kb (65536 bytes) of Flash ROM and 2kb (2028 bytes) of RAM. On
the 64kb, 2k are occupied by the bootloader - so we can only use 62kb. Make
always sure that the program fits into the available memory space!
(The RobotLoader doesn’t transfer the program if it is too big!)

- 60 -

This means that the example programs above leave 60414 bytes of free
space. The relatively short example program Example_01_Leds.c is only so
big because the Robot ArmBaseLibrary is included! So, don’t worry, there is
enough space for your programs and so small programs usually don’t need so
much memory space. The function library on its own needs several kb of Flash
memory but makes your job much easier and therefore your own programs
will generally be quite small compared to the Robot ArmBaseLibrary.

The just compiled program can now be uploaded via the RobotLoader into
the robot. To do that, you have to add the newly generated hex file into the
list in the RobotLoader via the button “Add”, select it and click on the “Upload”
button exactly as you did for the selftest program. After that you can switch
back to the terminal and look at the output of the program. Of course you
need to launch the execution of the program. The easiest way to do it in the
terminal is to press the key combination [STRG]+[S] on the keyboard or to
use the menu (or just to send an “s” - after a reset you have to wait a little bit
though until the message “[READY]” is displayed in the terminal!). The key
combination [STRG]+ [Y] is also very convenient as the currently selected
program is uploaded into the Robot Arm and immediately started. This avoids
to click on the “Flash Loader” tab in the terminal or to use the menu.

The example program is very simple and is only composed of a small LED
running light and some text output.

-

- 61 -

As a conclusion

We hope that our robots have guided you on your way into the
world of robots.
We share the conviction of our Japanese friends that robots will
become the next technological revolution after computers and
mobile phones. This revolution will trigger new economical impul-
ses.
Unfortunately Japan, other Far East countries and also the USA
have largely overtaken Europe in this field. Unlike Europe, tech-
nical courses start in Far East already in the primary school and
are an important part of the education.

Our target in the development of our robots ASURO,
YETI, Caterpillar and Robot Arm is therefore:

TO TRAIN A SCIENTIFIC MIND

- 62 -

APPENDIX

Modifications old PCB type RA2-HOBBY

Because of an stronger servo type the servo number 5 consumes more
power now as we calculated during development. When we activate more
servos at the same time there will be a very big servo current Aus trough
the FET with a big voltagedrop (0,5 Volt). This voltage drop can be to high
for a normal function of the robot arm (f.e. to litle power to lift the arm or a
small weight) this all because the low voltage on the servo.

Solving the problem:
Please replace the 1 Ohm servo 5 resitor (R29) with the supplied 0.1 Ohm-
resistor.

You also can remove and/or shortcut the FET (T1) with a wire to solve the
big voltage drop.

After this modifications the robot arm servos will have again sufficient po-
wer for normal operation maximum lift weight is about 200 grams now for
RA1-PRO and about 150 grams for RA2-mini.

TIP:
When you replace R29 with the 0.1 Ohm resistor the current for Servo 5
also will be changed and shows incorrect values, you can simply modify this
in your own C programs.

- 63 -

1
2

3
4

ABCD

4
3

2
1

D C B A

SE
RV

O
6

SE
RV

O
5

SE
RV

O
4

SE
RV

O
3

SE
RV

O
2

SE
RV

O
1

1 2 3

S1

1 2 3

S2

1 2 3

S3

1 2 3

S4

1 2 3

S5

1 2 3

S6

R2
1

1R
 1

/2
W R2

2

10
K

C2
1

10
u/

16
V

R2
3

1R
 1

/2
W R2

4

10
K

C2
2

10
u/

16
V

R2
5

1R
 1

/2
W R2

6

10
K

C2
3

10
u/

16
V

R2
7

1R
 1

/2
W R2

8

10
K

C2
4

10
u/

16
V

R2
9

1R
 1

/2
W R3

0

10
K

C2
5

10
u/

16
V

R3
1

1R
 1

/2
W R3

2

10
K

C2
6

10
u/

16
V

V
CC

_S
RV

cu
rre

nt
1

cu
rre

nt
2

cu
rre

nt
3

cu
rre

nt
4

cu
rre

nt
5

cu
rre

nt
6

X
1

16
M

C9 22
p

C1
0

22
p

C7 10
n

C6 10
0n

L2 10
uH

V
CC

R4 10
k

C8 10
0n

D
3

1N
41

48

RS
T

V
CC

RE
SE

T

LE
D

1

R8 22
0

R9 22
0

RG

V
CC

T1 L5
60

2S

V
CC

R6 1k

C1
2

47
0u

/1
6V

Y
0

13

Y
1

14

Y
2

15

Y
3

12

Y
4

1

Y
5

5

Y
6

2

Y
7

4

EN
6

S0
11

S1
10

S2
9

Z
3

U
3

74
H

C4
05

1

A B C

A
D

C_
EN

EX
T_

A
D

C

EY
E_

U
P

EY
E_

D
N

EY
E_

L
EY

E_
R

se
rv

o1
_u

_p
os

se
rv

o1
_d

_p
os

R1
1

1kR1
0

1k

SW
2

SW
3

R7 10
0k

V
CC

_S
RV

C1
1

22
0n

D
4

1N
40

07

be
ep

V
CC

R1
2

1k

Q
1

PN
10

0
be

p

(A
D

0)
 P

A
0

51

(A
D

1)
 P

A
1

50

(A
D

2)
 P

A
2

49

(A
D

3)
 P

A
3

48

(A
D

4)
 P

A
4

47

(A
D

5)
 P

A
5

46

(A
D

6)
 P

A
6

45

(A
D

7)
 P

A
7

44

(A
LE

) P
G

2
43

(A
8)

 P
C0

35

(A
9)

 P
C1

36

(A
10

) P
C2

37

(A
11

) P
C3

38

(A
12

) P
C4

39

(A
13

) P
C5

40

(A
14

) P
C6

41

(A
15

) P
C7

42

(R
D

) P
G

1
34

(W
R)

 P
G

0
33

PF
0

(A
D

C0
)

61

PF
1

(A
D

C1
)

60

PF
2

(A
D

C2
)

59

PF
3

(A
D

C3
)

58

PF
4

(A
D

C4
 /

TC
K

)
57

PF
5

(A
D

C5
 /

TM
S)

56

PF
6

(A
D

C6
 /

TD
O

)
55

PF
7

(A
D

C7
 /

TD
I)

54

A
RE

F
62

A
G

N
D

63

A
V

CC
64

PE
0

(P
D

I /
 R

X
D

0)
2

PE
1

(P
D

O
 /

TX
D

0)

3

PE
2

(A
C+

 /
X

CK
0)

4

PE
3

(A
C-

 /
O

C3
A

)
5

PE
4

(IN
T4

 /
O

C3
B)

6

PE
5

(IN
T5

 /
O

C3
C)

7

PE
6

(IN
T6

 /
T3

)
8

PE
7

(IN
T7

 /
IC

3)
9

PB
0

(S
S

)
10

PB
1

(S
CK

)
11

PB
2

(M
O

SI
)

12

PB
3

(M
IS

O
)

13

PB
4

(O
C0

)
14

PB
5

(O
C1

A
)

15

PB
6

(O
C1

B)
16

PB
7

(O
C2

 /
O

C1
C)

17

(IN
T0

 /
SC

L)
 P

D
O

25

(IN
T1

 /
SD

A
)

PD
1

26

(IN
T2

 /
RX

D
1)

 P
D

2
27

(IN
T3

 /
TX

D
1)

 P
D

3
28

(IC
1)

 P
D

4
29

(X
CK

1)
 P

D
5

30

(T
1)

 P
D

6
31

(T
2)

 P
D

7
32

X
TA

L2
23

X
TA

L1
24

GND 53GND 22
VCC21 VCC52

PE
N

1

RE
SE

T
20

PG
4

(T
O

SC
1)

19

PG
3

(T
O

SC
2)

18

U
2

A
TM

EG
A

64

se
rv

o1
se

rv
o2

se
rv

o3

se
rv

o4
se

rv
o5

se
rv

o6

PD
I

PD
Ocu

rre
nt

1
cu

rre
nt

2
cu

rre
nt

3
cu

rre
nt

4
cu

rre
nt

5
cu

rre
nt

6

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

PG
2

SS SC
K

M
O

SI
M

IS
O

SC
L

SD
A

RX
D

1
TX

D
1

U
BA

T
EX

T_
A

D
C

IN
T6

IN
T7

A B C A
D

C_
EN

EY
E_

EN
se

rv
o1

_u
_p

os
se

rv
o1

_d
_p

os

PD
4

PD
5

PD
6

PD
7

be
p

C1
7

22
0n

R1
3

10
0k

R1
4

10
0k

R1
5

10
0k

R1
6

10
0k

A. CIRCUIT DIAGRAM ROBOT ARM RA2-HOBBY

- 64 -

1
2

3
4

ABCD

4
3

2
1

D C B A
Ti

tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
7-

Ju
n-

20
10

Sh

ee
t

 o
f

Fi
le

:
F:

\硬
件

原
理

\m
in

i r
ob

ot
 A

R
M

\m
in

i r
ob

ot
.d

dbD
ra

w
n

By
:

Po
w

er
D

C
12

V

R1 39
0

LE
D

1

SW
1

Ba
tte

ry
4.

8V

D
1

1N
54

00

V
IN

1

ON/OFF5

GND 3

TAB 6

FD
B

4

V
O

U
T

2

U
1

LM
25

76
-5

C1

0.
1u

C4 0.
1u

C2 10
00

u/
35

V

D
2

1N
58

22
C3

10
00

u/
16

V

L1 22
u

V
CC

27
00

m
ah

siz
e

A
A

1.
2V

N
i-M

H
4

pc
s

R2 10
0k

R3 10
0k

U
BA

T C5 0.
1u

+U
B

C1
4

0.
1u

C1
5

0.
1u

C1
6

0.
1u

V
CC

B. CIRCUIT DIAGRAM POWER SUPPLY RA2-HOBBY

- 65 -

1
2

3
4

ABCD

4
3

2
1

D C B A
Ti

tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
10

-J
un

-2
01

0
Sh

ee
t

 o
f

Fi
le

:
F:

\硬
件

原
理

\m
in

i r
ob

ot
 A

R
M

\m
in

i r
ob

ot
.d

dbD
ra

w
n

By
:

1
2

3
4

5
6

J1 IS
P

PD
I

SC
K

RE
SE

T
PD

O

V
CC

1
2

3
4

5
6

7
8

9
10

J2 pr
og

/u
ar

t

V
CC

RX
D

1
RE

SE
T

TX
D

1

M
O

SI

PD
7

M
IS

O
SS

SC
K

1
2

3
4

5
6

7
8

9
10

11
12

13
14

J4

SP
I

V
CC

IN
T6

RE
SE

T

V
CC

1 2 3 4 5 6 7J6

EY
E_

U
p

EY
E_

R
EY

E_
D

W
N

EY
E_

L

EY
E_

EN

C1
3

0.
1u

+U
B

PA
5

PA
0

PA
1

PA
2

PA
3

PA
6

PA
7

PA
4

1
2

3
4

5
6

7
8

J5 ex
t k

ey
 p

ad

SC
L

IN
T6

IN
T7

1
2

3
4

5
6

7
8

9
10

11
12

13
14

J3

IIC
BU

S

SD
A

RE
SE

T

V
CC

+U
B

PD
4

PD
5

PD
6

C. CIRCUIT DIAGRAM CONNECTORS RA2-HOBBY

- 66 -

1
2

3
4

ABCD

4
3

2
1

D C B A
Ti

tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
7-

Ju
n-

20
10

Sh

ee
t

 o
f

Fi
le

:
F:

\硬
件

原
理

\m
in

i r
ob

ot
 A

R
M

\m
in

i r
ob

ot
.d

dbD
ra

w
n

By
:

D
1

1N
41

48

D
2

1N
41

48

SS
ER

V
O

1_
U

P

SE
RV

O
1_

D
W

N

PA
0

PA
1

D
3

1N
41

48

D
4

1N
41

48

SS
ER

V
O

2_
U

P

SE
RV

O
2_

D
W

N

PA
2

PA
3

PA
4

D
5

1N
41

48

D
6

1N
41

48

SS
ER

V
O

3_
U

P

SE
RV

O
3_

D
W

N

PA
0

PA
1

D
7

1N
41

48

D
8

1N
41

48

SS
ER

V
O

4_
U

P

SE
RV

O
4_

D
W

N

PA
2

PA
3

PA
5

D
9

1N
41

48

D
10

1N
41

48

SS
ER

V
O

5_
U

P

SE
RV

O
5_

D
W

N

PA
0

PA
1

D
11

1N
41

48

D
12

1N
41

48

SS
ER

V
O

6_
U

P

SE
RV

O
6_

D
W

N

PA
2

PA
3

PA
6

D
13

1N
41

48

D
14

1N
41

48

TA
N

K
_F

N
T

TA
N

K
_B

CK

PA
0

PA
1

D
15

1N
41

48

D
16

1N
41

48

TA
N

K
_R

IG
H

T

TA
N

K
_L

EF
T

PA
2

PA
3

PA
7

PA
5

PA
0

PA
1

PA
2

PA
3

PA
6

PA
7

PA
4

1
2

3
4

5
6

7
8

J1 ex
t k

ey
 p

ad

D. CIRCUIT DIAGRAM KEYBOARD RA2-HOBBY

- 67 -

E. PCB ROBOT ARM RA2-HOBBY

- 68 -

F. NEW PCB ROBOT ARM RA2-HOBBY

1
2

3
4

ABCD

4
3

2
1

D C B A

SE
RV

O
6

SE
RV

O
5

SE
RV

O
4

SE
RV

O
3

SE
RV

O
2

SE
RV

O
1

1 2 3

S1

1 2 3

S2

1 2 3

S3

1 2 3

S4

1 2 3

S5

1 2 3

S6

R2
1

1R
 1

/2
W R2

2

10
K

C2
1

10
u/

16
V

R2
3

1R
 1

/2
W R2

4

10
K

C2
2

10
u/

16
V

R2
5

1R
 1

/2
W R2

6

10
K

C2
3

10
u/

16
V

R2
7

1R
 1

/2
W R2

8

10
K

C2
4

10
u/

16
V

R2
9

1R
 1

/2
W R3

0

10
K

C2
5

10
u/

16
V

R3
1

1R
 1

/2
W R3

2

10
K

C2
6

10
u/

16
V

V
CC

_S
RV

cu
rre

nt
1

cu
rre

nt
2

cu
rre

nt
3

cu
rre

nt
4

cu
rre

nt
5

cu
rre

nt
6

X
1

16
M

C9 22
p

C1
0

22
p

C7 10
n

C6 10
0n

L2 10
uH

V
CC

R4 10
k

C8 10
0n

D
3

1N
41

48

RS
T

V
CC

RE
SE

T

LE
D

1

R8 22
0

R9 22
0

RG

V
CC

C1
2

47
0u

/1
6V

Y
0

13

Y
1

14

Y
2

15

Y
3

12

Y
4

1

Y
5

5

Y
6

2

Y
7

4

EN
6

S0
11

S1
10

S2
9

Z
3

U
3

74
H

C4
05

1

A B C

A
D

C_
EN

EX
T_

A
D

C

EY
E_

U
P

EY
E_

D
N

EY
E_

L
EY

E_
R

se
rv

o1
_u

_p
os

se
rv

o1
_d

_p
os

R1
1

1kR1
0

1k

SW
2

SW
3

V
CC

_S
RV

C1
1

22
0n

D
4

1N
40

07

be
ep

V
CC

R1
2

1k

Q
1

PN
10

0
be

p

(A
D

0)
 P

A
0

51

(A
D

1)
 P

A
1

50

(A
D

2)
 P

A
2

49

(A
D

3)
 P

A
3

48

(A
D

4)
 P

A
4

47

(A
D

5)
 P

A
5

46

(A
D

6)
 P

A
6

45

(A
D

7)
 P

A
7

44

(A
LE

) P
G

2
43

(A
8)

 P
C0

35

(A
9)

 P
C1

36

(A
10

) P
C2

37

(A
11

) P
C3

38

(A
12

) P
C4

39

(A
13

) P
C5

40

(A
14

) P
C6

41

(A
15

) P
C7

42

(R
D

) P
G

1
34

(W
R)

 P
G

0
33

PF
0

(A
D

C0
)

61

PF
1

(A
D

C1
)

60

PF
2

(A
D

C2
)

59

PF
3

(A
D

C3
)

58

PF
4

(A
D

C4
 /

TC
K

)
57

PF
5

(A
D

C5
 /

TM
S)

56

PF
6

(A
D

C6
 /

TD
O

)
55

PF
7

(A
D

C7
 /

TD
I)

54

A
RE

F
62

A
G

N
D

63

A
V

CC
64

PE
0

(P
D

I /
 R

X
D

0)
2

PE
1

(P
D

O
 /

TX
D

0)

3

PE
2

(A
C+

 /
X

CK
0)

4

PE
3

(A
C-

 /
O

C3
A

)
5

PE
4

(IN
T4

 /
O

C3
B)

6

PE
5

(IN
T5

 /
O

C3
C)

7

PE
6

(IN
T6

 /
T3

)
8

PE
7

(IN
T7

 /
IC

3)
9

PB
0

(S
S

)
10

PB
1

(S
CK

)
11

PB
2

(M
O

SI
)

12

PB
3

(M
IS

O
)

13

PB
4

(O
C0

)
14

PB
5

(O
C1

A
)

15

PB
6

(O
C1

B)
16

PB
7

(O
C2

 /
O

C1
C)

17

(IN
T0

 /
SC

L)
 P

D
O

25

(IN
T1

 /
SD

A
)

PD
1

26

(IN
T2

 /
RX

D
1)

 P
D

2
27

(IN
T3

 /
TX

D
1)

 P
D

3
28

(IC
1)

 P
D

4
29

(X
CK

1)
 P

D
5

30

(T
1)

 P
D

6
31

(T
2)

 P
D

7
32

X
TA

L2
23

X
TA

L1
24

GND 53GND 22

VCC21 VCC52

PE
N

1

RE
SE

T
20

PG
4

(T
O

SC
1)

19

PG
3

(T
O

SC
2)

18

U
2

A
TM

EG
A

64

se
rv

o1
se

rv
o2

se
rv

o3

se
rv

o4
se

rv
o5

se
rv

o6

PD
I

PD
Ocu

rre
nt

1
cu

rre
nt

2
cu

rre
nt

3
cu

rre
nt

4
cu

rre
nt

5
cu

rre
nt

6

PA
0

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

PG
2

SS SC
K

M
O

SI
M

IS
O

SC
L

SD
A

RX
D

1
TX

D
1

U
BA

T
EX

T_
A

D
C

IN
T6

IN
T7

A B C A
D

C_
EN

EY
E_

EN
se

rv
o1

_u
_p

os
se

rv
o1

_d
_p

os

PD
4

PD
5

PD
6

PD
7

be
p

R1
3

10
0k

R1
4

10
0k

R1
5

10
0k

R1
6

10
0k

EN
_S

RV

- 69 -

G. NEW PCB ROBOT ARM RA2-HOBBY

1
2

3
4

ABCD

4
3

2
1

D C B A
Ti

tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
13

-D
ec

-2
01

0
Sh

ee
t

 o
f

Fi
le

:
F:

\ 硬
件

原
理

\m
in

i r
ob

ot
 A

R
M

\m
in

i r
ob

ot
.d

dbD
ra

w
n

By
:

Po
w

er
D

C
9V

R1 39
0

LE
D

1

Ba
tte

ry
7.

2V
D

1
1N

54
00

V
IN

1

ON/OFF5

GND 3

TAB 6

FD
B

4

V
O

U
T

2

U
1

LM
25

76
-A

D
J

C1 10
0n

C4 0.
1u

C2 10
00

u/
35

V

D
2

1N
58

22
C3

10
00

u/
16

V

L1 47
uH

/3
A

+U
B

27
00

m
ah

siz
e

A
A

1.
2V

N
i-M

H
6

pc
s

R2 10
0k

R3 10
0k

U
BA

T C5 0.
1u

+U
B

C1
4

0.
1u

C1
5

0.
1u

C1
6

0.
1u

V
CC

Q
2

BC
84

7

R1
7

47
k

R1
8

47
k

R6 10
k

+U
B

EN
_S

RV

R2
0

47
k

1%

R1
9

1k
 1

%

SW
1

SR
V

_V
CC

C1
8

47
0u

/1
6V

C1
9

10
0N

V
in

1

GND 2

+5
V

3

U
15

L4
94

0D
2T

5-
TR

C2
0

22
0u

/1
6V

C2
1

10
0n

V
CC

