
PICAXE Manual
www.picaxe.co.uk

revolution

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

2

2

www.picaxe.co.uk

Contents
About this manual .. 4
Software Overview .. 4
Software Comparison .. 5
Software Quick Choice Guide .. 5
Third Party Software ... 5
Technical Support Forum ... 5
Quick Start .. 6
At a glance - specifications: .. 7
At a glance - download circuit: .. 7
At a glance - pinout diagrams: ... 8
At a glance - pinout diagrams (X2 parts): .. 9
What is a microcontroller? ... 10
Microcontrollers, input and outputs .. 11
What is the PICAXE system? ... 12
Building your own circuit / PCB ... 12
What is a PICAXE microcontroller? .. 13
PICAXE chip labels ... 13
Which PICAXE chip? .. 14
PICAXE Variant Feature Overview .. 16
Using the PICAXE system. .. 17
PICAXE Starter Packs ... 18
PICAXE Project Boards .. 19
Software Installation .. 20
Installation on RM CC3 networks .. 20
Installing the AXE027 USB cable drivers .. 21
Downloading over a network using TCP/IP ... 22
PICAXE Power Supply .. 23
PICAXE-08/08M Pinout and Circuit ... 25
PICAXE-14M Pinout and Circuit .. 26
PICAXE-20M/20X2 Pinout and Circuit .. 27
PICAXE-18/18A/18M/18X Pinout and Circuit .. 29
PICAXE-28A/28X/28X1/28X2 Pinout and Circuit ... 30
PICAXE-28X2 Module (AXE200) ... 32
PICAXE-40X/40X1/40X2 Pinout and Circuit .. 33
USB Download Circuit ... 36
Serial Download Circuit ... 37
Enhanced Serial Download Circuit ... 38
Download Cables .. 38
Reset Circuit .. 39
Resonator ... 39
Testing the System ... 41
Hard-reset procedure .. 42
Download CheckList .. 43
Understanding the PICAXE memory. .. 44
Flowchart, Logic or BASIC? .. 53
BASIC Simulation ... 54
Interfacing Circuit Summary .. 57
Tutorial 1 – Understanding and using the PICAXE System 58
Tutorial 2 - Using Symbols, Comments & White-space ... 61
Tutorial 3 - For…Next Loops ... 62
Tutorial 4 - Making Sounds .. 63
Tutorial 5 – Using Digital Inputs .. 64
Tutorial 6 – Using Analogue Sensors ... 65
Tutorial 7 - Using Debug ... 66
Tutorial 8 - Using Serial Terminal with Sertxd ... 66
Tutorial 9 - Number Systems .. 67
Tutorial 10 - Sub-procedures .. 68
Tutorial 11 - Using Interrupts .. 70
The next step - your own PICAXE project! .. 73

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

3

3

www.picaxe.co.uk

Appendix A – BASIC Commands Summary .. 74
Appendix B – Over-clocking at higher frequencies .. 78
Appendix C – Configuring the PICAXE-14M Input-Output Pins 80
Appendix D – Configuring PICAXE-08 / 08M Input-Output Pins 82
Appendix E – Configuring PICAXE-28X / 28X1 Input-Output Pins 84
Appendix F – Configuring PICAXE-40X / 40X1 Input-Output Pins 86
Appendix G - Using Flowcharts ... 88
Appendix H - Frequently Asked Questions (FAQ). .. 92
Appendix I - Advanced Technical Information and FAQ .. 96
Software Version .. 101
Contact Address ... 101
Acknowledgements ... 101

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

4

4

www.picaxe.co.uk

About this manual

The PICAXE manual is divided into three separate sections:

Section 1 - Getting Started (picaxe_manual1.pdf)

Section 2 - BASIC Commands (picaxe_manual2.pdf)

Section 3 - Microcontroller interfacing circuits (picaxe_manual3.pdf)

This first section provides general information for getting started with the PICAXE

system. No prior understanding of microcontrollers is required. A series of

tutorials introduce the main features of the system.

For more specific information, syntax and examples of each BASIC Command

please see section 2 ‘BASIC Commands’.

For microcontroller interfacing circuits, and example programs, for most

common input/output transducers, please see section 3

Software Overview

Revolution Education Ltd publish 4 software titles for use with the PICAXE

microcontroller chips. Two are free, the other two are low cost options.

PICAXE Programming Editor
The PICAXE Programming Editor is the main Windows application used for

programming PICAXE chips. This software is free of charge to PICAXE users.

The Programming Editor supports both textual (BASIC) and flowchart (graphical)

methods of developing programs. This manual was prepared using version 5.3.0
of the Programming Editor software.

AXEpad
AXEpad is a simpler, free version of the Programming Editor software for use on

the Linux and Mac operating systems. It supports the BASIC programming

method.

Logicator for PIC micros
Logicator is a flowcharting application designed for educational use. Programs are

developed as graphical flowcharts on screen. These flowcharts are then

automatically converted into BASIC files for download into the PICAXE chips.

PICAXE VSM
PICAXE VSM is a Berkeley SPICE circuit simulator, which will simulate complete

electronic circuits using PICAXE chips. The BASIC program can be stepped

through line by line whilst watching the input/output peripheral react to the

program.

This manual focuses on the BASIC textual programming language, as used by

Programming Editor, AXEpad and PICAXE VSM.

Please see the separate Logicator manual for more details about the Logicator flowchart

programming method.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

5

5

www.picaxe.co.uk

Software Comparison

Key:
X = Supported

(X) = Supported, but more suitable product also available,

e.g. for the flowchart method of programming ‘Logicator for PIC

micros’ is recommended, but the ‘PICAXE Programming Editor’

may also be used in flowchart mode.

Software Quick Choice Guide

Windows -> Textual BASIC programming -> Programming Editor

-> Flowchart programming -> Logicator for PIC

-> SPICE Circuit Simulation -> PICAXE VSM

Mac -> Textual BASIC programming -> AXEpad

Linux -> Textual BASIC programming -> AXEpad

Third Party Software

Revolution produce royality free PICAXE drivers that can be used to add PICAXE

support to third party products. Current third party software products include:

Win/Mac/Linux -> Flowchart programming -> Yenka PICs

->Circuit Simulation -> Yenka Electronics

->PCB Artwork -> Yenka PCB

Win/Mac -> Flowchart programming -> Flowol

Technical Support Forum

If you have a question about any aspect of the PICAXE system please post a

question on the very active (and friendly!) support forum at this website

www.picaxeforum.co.uk

Prog. Editor AXEpad Logicator PICAXE VSM

BASIC programming option X X (X) X

Flowchart programming option (X) X

Assembler code option X

Windows Version X (X) X X

Linux Version X

Mac OSX Version X

On Screen Simulation X X X

Berkeley SPICE Circuit Simulation X

Support of all PICAXE Types X X X X

Cost / Distribution Free Free
Shareware

(£15)
Cost Option

(£50)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

6

6

www.picaxe.co.uk

Quick Start

It is strongly recommended that you read the first few chapters of this manual

before using the PICAXE system. However if you cannot wait to get going, this

quick start guide provides a summary of the information explained in much

more detail later in this manual!

1. Install the Programming Editor software from the CDROM (or download

from www.picaxe.co.uk).

2. Insert the AXE026 serial cable into the 9 pin serial COM socket at the rear of

the computer, or the AXE027 USB cable into an available USB port.

3. Start the Programming Editor software (click Start>Programs>Revolution

Education>Programming Editor). Then click View>Options menu to display

the Options panel (this may also automatically appear on startup). On the

‘Mode’ tab select the correct type of PICAXE chip. On the ‘Ports’ tab also

select the appropriate serial COM port (the port where you connected the

serial / USB cable).

4. Connect an LED and 330 ohm resistor to the output pin 4 of the PICAXE

chip. On ‘home-made’ or prototype circuits connect the LED/resistor between

the output pin and 0V. On project boards (which have a Darlington transistor

buffered output) connect the LED/resistor between V+ and the output pin.

Ensure correct polarity of the LED.

5. Connect the PICAXE cable to the hardware.

6. Connect the 4.5V (3xAA battery) or 5V regulated power supply to the project

board. Do NOT use a 9V PP3 battery.

7. Using the software, type in the following program:

main: high 4

pause 1000

low 4

pause 1000

goto main

8. Click the PICAXE>Program menu to download the program to the hardware.

After the download the output LED should flash on and off very second.

Congratulations! You have now programmed a microcontroller using the PICAXE

System!

��

����

������	�
�	�
�

����

�������	�����
������	�

�������
��

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

7

7

www.picaxe.co.uk

At a glance - specifications:

Power Supply:
4.5V or 5V DC is recommended. Do not use 6V, 7.2V or 9V battery packs, these

could permanently damage the chip. For trouble-shooting use 3xAA cells only.

X2 parts are also optionally available in special low power 1.8V to 3.3V variants.

Note that 4.5V or 5V will permanently damage these special low power parts.

Outputs:
Each output can sink or source 20mA. This is enough to light an LED but will

not, for instance, drive a motor. Total maximum current per chip is 90mA.

Inputs:
An input should be above (0.8 x power supply) to be high, below (0.2 x power

supply) to be low. It is recommended, but not essential, to tie unused inputs low

via a 10k resistor.

ADC:
The ADC range is the power supply voltage range. The maximum recommended

input impedance is 20k. Unconnected ADC will ‘float’ giving varying false

readings.

Serial download pin:
The serial download pin must never be left floating. This will give unreliable

operation. Always use the 10k/22k resistors as shown below, even if the chip was

programmed on a different board.

Reset pin:
The reset pin (if present) must never be left floating. This will give unreliable

operation. Always tie high (ie to the positive supply) via a 4k7 or 10k resistor.

At a glance - download circuit:

�
�

�
�

� ������

���
��	���
���
��	
�
�����

 ��

���!�	!
�"

�

�

�

�

�
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

8

8

www.picaxe.co.uk

At a glance - pinout diagrams:

#�����	$
#�����	%
#�����	&
#�����	�	'	(�")	*
#�����	�
#�����	�	'	(�")	+
#�����	 	'	(�")	�
#�����	�
�
��
��	$	'	#��	�$	'	(���
�	'	��	����
��	%	'	#��	�%	'	(������	'	��	���
��	&	'	#��	�&	'	��
	���
��	�	'	#��	��	'	
��	���	'	��
	��

�����
,-�.,	'	�*�	�	'	��	��

�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

��
���������
���������

�
)��	���	'	#��	��	'	��	�
�")	 	'	#��	� 	'	��	

(�")	�	'	�")	�	'	#��	��	'	��	�
��
	���	'	
��	���	'	#��	��	'	��	�

��������	�

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�
�
��
�����	$	'	��	����
�����	%	'	��	���
�����	&
�����	�
��	�$	'	#��	�$	'	(���
�
��	�%	'	#��	�%	'	(������
��	�&	'	#��	�&	'	��
	���
��	��	'	#��	��	'	
��	���	'	��
	��

�����	�
�����	�

�����
,-�.,	'	�*�	�	'	��	��

�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

�*�	&
�*�	%
�*�	$

�
��

���������
���������

�
)��	���	'	#��	��	'	��	��
�")	 	'	#��	� 	'	��	�
�")	�	'	#��	��	'	��	��

��	���	'	��
	���	'	#��	��	'	��	��
�����	�
�����	

����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

�*�	�	'	�����	�
/��
��	#��
/��
��	��
�����

��
#�����	�

��	���	'	#�����	
#�����	�

�")	�	'	#�����	�

�����	 	'	�*�	
�����	�	'	�*�	�	'	��2��
�
�����	$	'	��3�����	����
�����	%	'	��3�����	�����
�
#�����	$
#�����	%
#�����	&
#�����	�	'	
��	���

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	�

��
#�����	�	'	/��
��	#��	'	��2�����
#�����	
#�����	�
#�����	�
#�����	�
#�����	&

�
/��
��	��

�*�	�	'	�����	�
��2��
�	'	�����	�

�����	�
�����	

�*�	�	'	�����	�

�

�

�

&

%

$

 �

 �

 �

 �

1

0

�������
�

��
#��	�	'	/��
��	#��	'	��2�����
��	 	'	#��	 	'	�*�	
��	�	'	#��	�	'	�*�	�	'	�")	�	'	����

�
/��
��	��

�*�	�	'	#��	�	'	��	�
��2��
�	'	��	�

�

�

�

0

$

%

&

��������	

(c) Revolution Education Ltd

www.picaxe.co.uk

��
/��
��	#��
#�����	�	'	��2�����
#�����	
#�����	�
#�����	�
#�����	�
#�����	&
#�����	%
#�����	$

�
/��
��	��

�*�	$	'	�����	$
�����	%
�����	&
�����	�

�*�	�	'	�����	�
�*�	�	'	�����	�
�*�	 	'	�����	
��2��
�	'	�����	�

�

�

�

&

%

$

0

1

 �

��

 1

 0

 $

 %

 &

 �

 �

 �

���������

�*�	�	'	�����	�
/��
��	#��
/��
��	��
�����

��
#�����	�	'	
�2�����

#�����	
#�����	�

#�����	�	'	�")	�

�����	 	'	�*�	
�����	�	'	�*�	�	'	��2��
�
�����	$	'	��3�����	����
�����	%	'	��3�����	�����
�
#�����	$
#�����	%
#�����	&
#�����	�

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

9

9

www.picaxe.co.uk

At a glance - pinout diagrams (X2 parts):

+4$
+4%
+4&
+4�	'	�*�
+4�	'	�*�1
+4�	'	�*�0			'	(
���
+4 	'	�*� �	'	(
��
+4�	'	�*� �	'	(
���
�
��
*4$	'	(�")	*	'	��	����
*4%	'	(�")	�	'	��	���
*4&	'	(�")	+
*4�
�4$	'	(���
�
�4%	'	(������
�4&	'	(��
	���
�4�	'	(
��	���	'	(��
	��

*4�
*4�

�����
� 5	'	�*��	'	�4�
��5	'	�*� 	'	�4
��	'	�*��	'	�4�
� 	'	�*��	'	�4�

/��
��	��
/��
��	#��	'	�4�

�*�&	'	�4&
�*�%	'	�4%
�*�$	'	�4$

�
��

���������
���������

�
)��	���	'	�4�
�")	�4 	'	�4

(�")	�	'	�")	�4�	'	�4�
(
��	���	'	(��
	���	'	�4�

*4�
*4

�����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

��
�4�	'	/��
��	#��
+4�	'	�*� 	'	(
��
+4 	'	�*��	'	(
���	'	/�6
+4�	'	�*��	'	��
+4�	'	�*�&	'	��5
+4�	'	�*�%	'	(�")	*	'	� 5
+4&	'	�*� �	'	(
��	���	'	(��
	��

+4%	'	�*� 	'	(���
�
+4$	'	(
��	���	'	(��
	���

�
/��
��	��

�*��	'	�4$
�4%

(�")	�	'	�")	�4&	'	�4&
("�)	+	'	/�76	'	�4�
(�")	�	'	�*�$	'	�4�

��	���	'	�*�0	'	�4�
(��
	���	'	��	����	'	�*�1	'	�4

(������	'	�4�

�

�

�

&

%

$

0

1

 �

��

 1

 0

 $

 %

 &

 �

 �

 �

�����������

+4$
+4%
+4&
+4�	'	�*� 	'	8(�")	*9
+4�	'	�*�1
+4�	'	�*�0	'	(
���	'	8(�")	+9
+4 	'	�*� �	'	(
�� 	'	8(�")	�9
+4�	'	�*� �	'	(
���
�
��
�4$	'	(���
�	'	��	����
�4%	'	(������	'	��	���
�4&	'	(��
	���
�4�	'	(
��	���	'	(��
	��

�����
� 5	'	�*��	'	�4�
��5	'	�*� 	'	�4
��	'	�*��	'	�4�
� 	'	�*��	'	�4�

/��
��	��
/��
��	#��	'	�4�

��
���������
���������

�
)��	���	'	�4�
�")	�4 	'	�4

8(�")	�9	'	�")	�4�	'	�4�
(
��	���	'	(��
	���	'	�4�

��������	��

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

10

10

www.picaxe.co.uk

What is a microcontroller?

A microcontroller is often described as

a ‘computer-on-a-chip’.

It is a low-cost integrated circuit that

contains memory, processing units,

and input/output circuitry in a single

unit. Microcontrollers are purchased

‘blank’ and then programmed with a

specific control program.

Once programmed the microcontroller is build into a product to make the

product more intelligent and easier to use.

As an example, a microwave oven may use a single

microcontroller to process information from the

keypad, display user information on the seven

segment display, and control the output devices

(turntable motor, light, bell and magnetron).

One microcontroller can often replace a number of

separate parts, or even a complete electronic circuit.

Some of the advantages of using microcontrollers in a product design are:

• increased reliability through a smaller part count

• reduced stock levels, as one microcontroller replaces several parts

• simplified product assembly and smaller end products

• greater product flexibility and adaptability since features are programmed into

the microcontroller and not built into the electronic hardware

• rapid product changes or development by changing the program and not the

electronic hardware

Applications that use microcontrollers include household appliances, alarm

systems, medical equipment, vehicle subsystems, and electronic instrumentation.

Some modern cars contain over thirty microcontrollers - used in a range of

subsystems from engine management to remote locking!

In industry microcontrollers are usually programmed using the assembler or ‘C’

programming languages. However the complexity of these languages means that

it is often not realistic for younger students in education, or many home

hobbyists without formal training, to use these programming methods.

The PICAXE system overcomes this problem by use of a much simpler, easy to

learn, BASIC programming language. Programs can also be created graphically by

use of the flowchart editor.

��������	
����

�
�
�
�
�

�
�
�
	
�

:,--
;�<;

=�*

*�:
�-���

�##>

?�=�

/�?

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

11

11

www.picaxe.co.uk

Microcontrollers, input and outputs

A popular children’s electronic toy is shown in the

diagram. This is a good example of a mechatronic

system, as it uses an electronic circuit to control a

number of mechanisms. It also contains a number of

sensors so that it can react to changes when it is

moved (for example being put in a dark place or

being turned upside down).

Input transducers are electronic devices that detect

changes in the ‘real world’ and send signals into the

process block of the electronic system.

Some of the input transducers for the electronic toy are:

• push switches on the front and back to detect when the toy is being ‘stroked’,

and a switch in the mouth to detect when the toy is being ‘fed’

• a light-dependent resistor (LDR) between the eyes to detect if it is light or

dark

• a microphone to detect noises and speech

• a tilt switch to detect when the toy is being turned upside down

• an infrared detector to detect infrared signals from other toys

Output transducers are electronic devices that can be switched on and off by the

process block of the electronic system. Some of the output transducers of the

electronic toy are:

• a motor to make the eyes and mouth move

• a speaker to produce sounds

• an infrared LED (light-emitting diode) to send signals to other toys.

The microcontroller uses information from the input transducers to make

decisions about how to control the output devices. These decisions are made by

the control program, which is downloaded into the microcontroller. To change

the ‘behaviour’ of the toy it is simply a process of changing and downloading a

new program into the microcontroller

�������

��	��
���
����������

����

��������������

������������

�����������

�����
���������

��������

��	��
���
��������

���������

����� ����	

 ������

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

12

12

www.picaxe.co.uk

What is the PICAXE system?

The PICAXE system exploits the unique characteristics of the

new generation of low-cost ‘FLASH’ memory based

microcontrollers. These microcontrollers can be programmed

over and over again (typically 100 000 times) without the need

for an expensive programmer.

The PICAXE uses a simple BASIC language (or graphical flowcharts) that younger

students can start generating programs with within an hour of first use. It is much

easier to learn and debug than industrial programming languages (C or assembler

code).

Unlike other BASIC ‘module’ based systems, all PICAXE programming is at the

‘chip’ level. Therefore instead of buying an expensive pre-assembled (and difficult

to repair) surface mount module, with the PICAXE system you simply purchase a

standard chip and use it directly in your project board.

The power of the PICAXE system is its simplicity. No programmer, eraser or

complicated electronic system is required - the microcontroller is programmed

via a 3-wire connection to the computers serial port. The operational PICAXE

circuit uses from just 3 components and can be easily constructed on a

prototyping breadboard, strip-board or PCB design.

The PICAXE ‘Programming Editor’ software is free and so the only cost per

computer is the low-cost download cable. In the educational environment this

enables students to buy their own cable and for schools to equip every single

computer with a download cable. Other systems that require an expensive

programmer or ‘module’ are generally too expensive to implement in this way.

Finally as the PICAXE chip never leaves the project board, all leg damage (as can

occur when the chip is moved back and forth from a programmer) is eliminated.

Building your own circuit / PCB

The PICAXE system has been designed to allow students / hobbyists to build their

own PCB circuits for the PICAXE system. However if you do not wish to make

your own circuit a number of project board kits and PCBs are available - please

see the current PICAXE catalogue for more details.

If you wish to make your own PCB some reference designs are available at the

PCB section of the PICAXE website at www.picaxe.co.uk

PCB samples are available for educational use in the popular realPCB and PCB

Wizard formats.

If you wish to ‘bread-board’ a prototype

circuit the AXE091 Development kit is highly

recommended.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

13

13

www.picaxe.co.uk

What is a PICAXE microcontroller?

A PICAXE microcontroller is a standard Microchip PICmicro™ microcontroller

that has been pre-programmed with the PICAXE bootstrap code. The bootstrap

code enables the PICAXE microcontroller to be re-programmed directly via a

simple serial connection. This eliminates the need for an (expensive)

conventional programmer, making the whole download system a very low-cost

simple serial cable!

The pre-programmed bootstrap code also contains common routines (such as

how to generate a pause delay or a sound output), so that each download does

not have to waste time downloading this commonly required data. This makes

the download time much quicker.

As the blank microcontrollers purchased to ‘make’ PICAXE microcontrollers are

purchased in large volumes, it is possible for the manufacturer to program the

bootstrap code and still sell the PICAXE microcontroller at prices close to

standard catalogue process for single un-programmed PIC microcontrollers. This

means the cost of the PICAXE microcontroller to the end user is very economical.

The PICAXE bootstrap code is not available for programming into blank

microcontrollers. You must purchase PICAXE microcontrollers (rather than

blank, un-programmed microcontrollers) for use in the PICAXE system.

PICAXE chip labels

PICAXE chips are pre-programmed and tested Microchip PICmicro™

microcontrollers. They are therefore ‘stamped’ with the Microchip part name.

• PICAXE-08 PIC12F629

• PICAXE-08M PIC12F683

• PICAXE-14M PIC16F684

• PICAXE-18M PIC16F819

• PICAXE-18X PIC16F88

• PICAXE-20M PIC16F677

• PICAXE-20X2 PIC18F14K22

• PICAXE-28X1 PIC16F886

• PICAXE-28X2 PIC18F2520 (3V version PIC18F25K20)

• PICAXE-40X1 PIC16F887

• PICAXE-40X2 PIC18F4520 (3V Version PIC18F45K20)

• PICAXE-18 PIC16F627(A) Superseded by 18M

• PICAXE-18A PIC16F819 Superseded by 18M

• PICAXE-28A PIC16F872 Superseded by 28X1

• PICAXE-28X PIC16F873A Superseded by 28X1

• PICAXE-40X PIC16F874A Superseded by 40X1

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

14

14

www.picaxe.co.uk

Which PICAXE chip?

The PICAXE system can be used with different physical

sizes of PICAXE chip (8, 14, 18, 20, 28 and 40 pin). The

primary difference between the sizes of chips is the

number of input/output pins available – the larger chips

cost a bit more but have more available input/output pins.

The same BASIC language is common to all size chips.

Within a chip size there are also different

variants (e.g. for the 18 pin PICAXE the 18M

and 18X variants are available). The

principal difference between the variants is

the amount of memory (ie how long a

program can be downloaded into the chip).

The higher specification variants also have

some increased functionality (e.g. high

resolution analogue inputs and i2c

compatibility, as described in the next

section). Any project can be upgraded to the

next level variant at any point (e.g. if your

program is too long for the variant of chip

used) by simply replacing the

microcontroller in your circuit with the

upgraded variant. All upgraded variants are

pin and program compatible with the lower

specification device.

The recommended part for new designs is:

Educational:

08 PICAXE-08M

14 PICAXE-14M

18 PICAXE-18M (also consider the 20M)

20 PICAXE-20M

Standard:

18 PICAXE-18X

28 PICAXE-28X1

40 PICAXE-40X1

Advanced:

20 PICAXE-20X2

28 PICAXE-28X2

40 PICAXE-40X2

��
/��
��	#��
#�����	�	'	��2�����
#�����	
#�����	�
#�����	�
#�����	�
#�����	&
#�����	%
#�����	$

�
/��
��	��
�����	$
�����	%
�����	&
�����	�

�*�	�	'	�����	�
�*�	�	'	�����	�
�*�	 	'	�����	
��2��
�	'	�����	�

�

�

�

&

%

$

0

1

 �

��

 1

 0

 $

 %

 &

 �

 �

 �

���������

��
#��	�	'	/��
��	#��
#�����	
#�����	�
#�����	�
#�����	�
#�����	&

�
/��
��	��

�*�	�	'	�����	�
��2��
�	'	�����	�

�����	�
�����	

�*�	�	'	�����	�

�

�

�

&

%

$

 �

 �

 �

 �

1

0

�������
�

��
#���	'	/��
��	#��
�� 	'	#�� 	'	�*�
���	'	#���	'	�*��

�
/��
��	��

��	�	'	#���	'	�*��
���'��2��
�

�

�

�

0

$

%

&

��������	

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

15

15

www.picaxe.co.uk

The following table shows the primary functional differences between the

available PICAXE microcontrollers.

For general ‘hobbyist’ use we recommend the Standard level series.

Budget: (40 - 100 line memory)

08 5 inputs/outputs 1 low-res ADC4MHz

Education: (80 - 220 line memory)

08M 1-4 inputs 1-4 outputs 3 ADC 8MHz

14M 5 inputs* 6 outputs* 2 ADC* 8MHz

18M 5 inputs 8 outputs 3 ADC 8MHz

20M 8 inputs 8 outputs 4 ADC 8MHz

Standard: (800 - 1800 line memory)

18X 5 inputs 8 outputs 3 ADC 8MHz

28X1 0-12 inputs 9-17 outputs 0-4 ADC 20MHz

40X1 8-20 inputs 9-17 outputs 3-7 ADC 20MHZ

Advanced: (2000 - 3200 line memory in up to 4 separate slots)

20X2 18 configurable i/o 0-8 ADC 64MHz

28X2 22 configurable i/o 0-8 ADC 40MHz

40X2 33 configurable i/o 0-10 ADC 40MHZ

All parts default to operation at 4MHz (8MHz for X2 parts). For use at higher

speeds please see the appropriate appendix at the rear of this manual.

* The 14M can also be reconfigured - see the appendix at the end of this manual.

The older 18, 18A parts are no longer manufactured as they have now been superseded

by the 18M (or alternately 20M) parts.

The older 28, 28A, 28X and 40X parts are no longer manufactured as they have now

been superseded by the X1 parts.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

16

16

www.picaxe.co.uk

PICAXE Variant Feature Overview

Budget Level Features: (08)
• economical price for bulk educational use

• 40-110 line memory

• low resolution ADC

Educational Level ‘M’ part Features: (08M, 14M, 18M, 20M)
• program memory 2x larger (80-220 lines)

• interrupts

• support for digital temperature sensor

• control of radio-control servos

• keyboard input

• plays user defined musical tunes

• infra-red transmit and receive

• 8/10 bit ADC option

• control of radio-control servos

• pwm motor control

• input pulse counting

• serial output via programming cable

Standard ‘X1’ part Features (28X1, 40X1 parts)
• all M part features plus

• program memory 16x larger than M parts (2000-3200 lines)

• hardware i2c (master & slave), spi and serial functions

• internal timer

• 8/10 bit ADC option

• 12 bit temperature read option

• pwm motor control

• input pulse counting

• serial output via programming cable

• higher baud rate for serial work

• increased variables and separate scratchpad

• enhanced mathematical capabilities

• real life line by line simulation

Advanced ‘X2’ part Features (20X2, 28X2, 40X2 part)
• all X1 part features plus

• up to 4 internal program slots and 32 external program slots

• increased RAM, up to 256 bytes + 1024 bytes scratchpad

• increased operating speed, up to 64MHz

• individual pin input/output control

• many more ADC pins available

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

17

17

www.picaxe.co.uk

Using the PICAXE system.

To use the PICAXE system you will require:

• A PICAXE microcontroller

• A PICAXE circuit board

• A power supply (e.g. 4 rechargeable AA

cells (4.8V) or 3 alkaline AA cells (4.5V))

• A download cable (USB or serial)

• The free ‘Programming Editor’ software or

‘AXEpad’ software.

All these items are included within all the PICAXE ‘starter’ packs.

To run the Programming Editor software you require a computer running

Windows 95 or later. Any computer that runs the Windows operating system will

work in textual ‘BASIC’ mode, however a Pentium 4 processor or later is

recommended for graphical flowchart work.

To run the AXEpad software you require a PC with a x386 Linux distribution or

Mac with OSX (10.2 or later).

The computer also requires a USB port (for AXE027 USB cable) or 9 pin serial

port for connecting the AXE026 serial download cable. See the USB/Serial Port

setup section for more details.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

18

18

www.picaxe.co.uk

PICAXE Starter Packs

To get started with the PICAXE system a starter pack is recommended. All 5 starter

packs contain the same CDROM (containing the manuals and free programming

software), USB (or serial) download cable and battery box. However the project

board and type of PICAXE chip varies in each starter pack as indicated below.

3 x AA batteries are also required (not included).

PICAXE-08M Starter Pack (AXE003U)
PICAXE-08 protoboard, PICAXE-08M

chip, CDROM, USB download cable and

battery box. Self assembly kit.

PICAXE-14M Starter Pack (AXE004U)
PICAXE-20M Starter Pack (AXE005U)
PICAXE-14 projectboard, PICAXE-14M

chip, CDROM, USB download cable and

battery box. Self assembly kit.

PICAXE-18X Starter Pack (AXE002U)
PICAXE-18 standard project board,

PICAXE-18X chip, CDROM, USB

download cable and battery box. Pre-

assembled (18X chip supplied).

PICAXE-28X1 Starter Pack (AXE001U)
PICAXE-28 project board, connector

cables, PICAXE-28X1 chip, CDROM,

USB download cable and battery box.

Pre-assembled (28X1 chip supplied).

Development Starter Pack (AXE091U)
Specifically designed for hobbyists with

large breadboarding area and inputs/

outputs for experimentation.

The development PCB can support all

sizes of PICAXE chips and is supplied

with a PICAXE-18X chip. Pre-assembled.

Tutorial Starter Pack (AXE050U)
The tutorial pack is designed for school

use to enable students to rapidly learn

the PICAXE language by a series of

structured tutorials (provided on the

CDROM). Pre-assembled board with

LDR, switches and output display.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

19

19

www.picaxe.co.uk

PICAXE Project Boards

Individual project boards/kits are also available for users who do not wish to

manufacture their own pcb. All boards have the serial download connector for

programming the PICAXE chip via the serial / USB download cable.

PICAXE-08 Proto Board (AXE021)
Small self-assembly board to allow rapid prototyping of

PICAXE-08 circuits. The board provides the basic circuit and

download connector, with a small prototyping area to allow

connection of input and output circuits.

PICAXE-08 Motor Driver (AXE023)
The motor driver board can be used to drive 4 individual on/

off outputs (e.g. buzzers), or the outputs can be used in pairs

to allow forward-reverse-stop control of two motors. Pre-

assembled with PICAXE-08 chip included.

PICAXE-14 Project Board (AXE117)
PICAXE-20 Project Board (AXE118)
The project board PCB is a professional quality PCB that

enables students to construct a project board that has 6

outputs and 5 inputs. The board provides space for the

PICAXE-14M chip, download socket and darlington driver.

Self assembly kit (including PCB).

PICAXE-18 Project Board (CHI030)
The PICAXE-18 standard interface board is a pre-assembled

board fitted with a darlington driver chip so that output

devices such as motors and buzzers can be connected directly

to the board. Supports 5 inputs and 8 outputs.

PICAXE-18 High Power Project Board (CHI035)
The pre-assembled high power interface board provides 4

FET drivers to drive high current output devices. By addition

of the optional L293D motor driver chip, an additional 2

motor control outputs can be added.

PICAXE-28 Project Board (AXE020)
A pre-assembled board fitted with a darlington driver chip

for 8 output devices. By addition of the optional motor

driver chip, an additional 2 motor control outputs can be

added to the board. Supplied with connector ribbon cables.

PICAXE-28/40 Proto Board (AXE022)
The PICAXE-28/40 protoboard kit allows rapid development

of PICAXE-28X1 and 40X1 projects. The board provides the

basic circuit and download connector, with connections for

input and output circuits. EEPROM socket included.

Each project board has it’s own datasheet containing connection

details, circuit diagram etc. These datasheets are accessed via the

‘Help’ menu of the software.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

20

20

www.picaxe.co.uk

Software Installation

Computer Requirements:
To install the software you require a computer running Windows 95 or later with

approximately 30MB free space. Any computer that runs the Windows operating

system will work in textual ‘BASIC’ mode, however a Pentium 4 processor or later

is recommended for graphical flowchart work.

Installation:
1) Start up and log into your computer (some operating systems require that you

log in as ‘Administrator’ to install software).

2) Insert the CD, or download and run the installation file from the software

page at www.picaxe.co.uk

3) Follow the on-screen instructions to install the software. On older computers

you may be instructed to restart the computer after installation.

4) Insert the AXE026 cable into the 9 pin serial port at the back of the computer.,

or the AXE027 USB cable into the USB port. The AXE027 will require a

software driver when first used, a ‘New hardware found’ wizard will

automatically start (see the AXE027 datasheet for more details).

5) Click Start>Programs>Revolution Education>Programming Editor to start the

software.

6) If the Options screen does not automatically appear, click the View>Options

menu. On the ‘Mode’ tab select the size and type of PICAXE microcontroller

you are using. On the ‘Port’ tab select the appropriate serial COM port then

click OK.

You are now ready to use the system.

Installation on RM CC3 networks

The software will run on all school networks, including RM CC3.

1) It is recommended you use the uncompressed MSI install provided on the

CDROM, rather than the internet download.

2) Log on as System Admin and use your preferred distribution software (e.g. RM

Application Wizard) to build a distribution package using the MSI install

found within the /progedit folder on the CDROM. If preferred you can also

manually copy the MSI files into the RMPackages\Applications area.

3) Update the package list of the appropriate workstations using the RM

Management Console and generate shortcuts as required.

4) XP users - note that you may have to create two Software Restrictions ‘hash’

rules - one to the progedit.exe executable and another to the shortcut. To do

this log on as System Admin on an XP workstation, click

Start>Programs>System Management>Software Restriction settings. Open

Computer Configuration>Windows Settings>Software Restriction

Policies>Additional Rules. From the Action menu select ‘New Hash Rule’ and

browse to the progedit.exe executable. Click OK.

5) The default save/open folder paths can be edited as required in the file called

network.ini found in the main installation folder.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

21

21

www.picaxe.co.uk

Installing the AXE027 USB cable drivers

Many desktop computers have a 9 pin serial connector for connection of the

PICAXE download cable. However some modern laptop computers do not have a

9 pin serial connector to save space, in this case the USB port must be used

instead.

The USB interface system is an intelligent system that requires the connected

device to automatically configure itself when connected to the computers USB

port. Although it is theoretically possible to build a USB version of the PICAXE,

the extra memory required would increase the cost of every single PICAXE chip by

almost £3 ($5).

Therefore an alternate system is used. The user purchases a one-off low-cost ‘USB

to serial’ cable (part AXE027), which is a special intelligent PICAXE cable that

allows chips to be programmed via the USB port.

USB Cable Installation procedure:

(Please see the USB Cable (AXE027.pdf) help file for more detailed instructions.

This is available on the software page at www.picaxe.co.uk or the \USB folder of

the CDROM).

1) Purchase the AXE027 USB cable.

2) Connect to the USB port of the computer

3) Insert the CDROM supplied with the USB adapter to install the latest driver

4) Note the serial port COM number allocated to the USB adapter.

5) Connect the standard PICAXE cable to the USB adapter.

6) Start up the Programming Editor software and select the appropriate COM

port from the View>Options>Port menu.

7) Click ‘Refresh’ to refresh the available port list.

8) Use the software and hardware as normal.

Notes:
• Windows 95 and NT do not support USB devices.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

22

22

www.picaxe.co.uk

Downloading over a network using TCP/IP

The Programming Editor software supports COM port redirection over a TCP/IP

“ethernet” connection. This connection can be a local network or even the

internet.

To use this feature a ‘virtual’

COM port is created on the

local computer (the computer

that is running the

Programming Editor software)

and creates a TCP/IP

connection. At the remote

computer (where the download

cable is connected to the USB/

serial port) a small redirection

service application is installed

and then redirects the real COM

port to the TCP/IP connection.

This system allows the

Programming Editor software

to use the serial port on the

remote computer exactly as if it

was on the local computer -

new program downloads and

even serial data can be

transmitted seamlessly back

and forward over the TCP/IP

connection.

To setup this connection two steps are required:

1) Run the wizard (PICAXE>WIzards>COM to TCP/IP menu) on the local

computer to setup the local connection.

2) Install the SEC software on the remote computer and run it’s Wizard to select

the serial port to be used. This software runs as a service and so can be configured

to always start when the computer is powered up. This allows it to be installed on

unattended machines (e.g. in a museum).

For further details please see the Serial Ethernet Connection software datasheet.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

23

23

www.picaxe.co.uk

PICAXE Power Supply

All PICAXE chips will run programs at voltages between 3 and 5.5V DC. However

some computers may require a 4.5V to 5.5V PICAXE power supply to enable

correct communication whilst actually downloading a new program (ie a 3V

supply may not enable a new program to be successfully downloaded, depending

on the type of computer used).

IMPORTANT NOTE - this manual describes use of the standard range (3-5.5V) parts.

The X2 parts are also optionally available in special low power (1.8V to 3.3V) variants.

Use of a 5V supply on a 3.3V part will permanently damage it!

It is recommended that the power supply is provided in one of the 3 following

ways:

• 3 x AA alkaline AA cells (4.5V)

• 4 x rechargeable AA cells (4.8V)

• 5V regulated from a 9V DC regulated supply (5V)

Do not use a 9V PP3 battery, this is above the maximum rating of the PICAXE

chip and will cause permanent damage. Note that most 3xAA and 4xAA battery

boxes use the same ‘press-stud’ style connector and battery snap/clip as a PP3 9V

battery. Note the provision of this style of clip does not mean that a project board

should use a PP3 9V battery, it is just unfortunate that all battery boxes use the

same style connector.

PP3 9V batteries are designed for very low-current, long term applications (e.g. a

smoke alarm or multi-meter). Although a PP3 9V supply regulated to 5V will

work for short periods with a microcontroller, it will drain very quickly when an

output device (e.g. LED, motor or buzzer) is connected. Therefore always use AAA

or AA battery packs rather than 9V PP3 batteries in microcontroller projects (as

used with many portable consumer goods e.g. CD players, LED torches etc.) Take

care when inserting PICAXE chips into your circuit to ensure they are the correct

way around. Take extra care with 18 pin chips, as if inserted ‘upside-down’ the

power supply connections will be reversed causing permanent damage to the

chip.

AA Battery Packs
Alkaline AA cells have a nominal voltage of 1.5V, so 3 cells will give 4.5V. If you

wish to use 4 cells, also use a 1N4001 diode in series with the battery pack. The

diode provides voltage polarity protection, and as the diode has a 0.7V drop the

microcontroller voltage will be an acceptable 5.3V (6V-0.7V).

Rechargeable AA cells have a nominal voltage of 1.2V, so 4 cells will give 4.8V.

Take care not to short circuit any battery pack, as the large short circuit current

may cause considerable heat damage or start a fire.

Using battery snaps.
Battery packs are often connected to electronic printed circuit boards

by battery snaps. Always ensure you connect the red and black wires

the correct way around. It is also useful to thread the battery snap

through holes on the board before soldering it in place - this

provides a much stronger joint that is less likely to snap off.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

24

24

www.picaxe.co.uk

Regulated Power Supply.
Some users may wish to use a ‘wall adapter’ style power supply (e.g. part

PWR009). It is essential that a good quality regulated 9V DC device is used with a

5V regulator. Unregulated devices may give excessive voltages (under low load

conditions) that will damage the microcontroller.

The 9V DC supply must be regulated to 5V using a voltage regulator (e.g. 7805

(1A capability) or 78L05 (100mA capability)). The full regulation circuit is shown

below. The 1N4001 diode provides reverse connection protection, and the

capacitors help stabilise the 5V supply. Note that voltage regulators do not

generally function correctly unless the input supply in this circuit is

approximately 8V or higher.

Never try to use a 9V PP3 battery with this circuit. The PP3 battery has insufficient

current capability and is not recommended for any PICAXE project work.

IMPORTANT NOTE - this manual describes use of the standard range (3-5V) parts.

The X2 parts are also optionally available in special low power (1.8V to 3.3V) variants.

Use of a 5V supply on a 3.3V part will permanently damage it!

&�

#��

��

 ��� ���

 7���
$08-9�&
��@������

 ��� ���

A0�

��

��

����
��

������

����
��
������

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

25

25

www.picaxe.co.uk

PICAXE-08/08M Pinout and Circuit

The pinout diagrams for the 8 pin devices are as follows:

(0.3” DIL or 150mil SOIC)

The minimum operating circuit for the 8 pin devices is:

See the Serial Download Circuit section of this manual for more details about the

download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

2) Output pin 0 (leg 7) is used during the program download, but can also be

used as a general purpose output once the download is complete. On the

project boards a jumper link allows the microcontroller leg to either be

connected to the download socket (PROG position) or to the output (OUT

position). Remember to move the jumper into the correct position when

testing your program!

If you are making your own pcb you can include a similar jumper link or small

switch, or you may prefer to connect the microcontroller leg to both the output

device and the program socket at the same time. In this case you must remember

that your output device will rapidly switch on and off as the download takes

place (not a problem with simple outputs like LEDs, but could cause problems

with other devices such as motors).

��
#�����	�	'	/��
��	#��
��	 	'	#��	 	'	�*�	
��	�	'	#��	�

�
/��
��	��

#��	�	'	��	�
��	�

�

�

�

0

$

%

&

��������	
��
#��	�	'	/��
��	#��	'	��2�����
��	 	'	#��	 	'	�*�	
��	�	'	#��	�	'	�*�	�	'	�")	�	'	����

�
/��
��	��

�*�	�	'	#��	�	'	��	�
��2��
�	'	��	�

�

�

�

0

$

%

&

��������	

�0

�

�

�

&�

��

���
��	���

���

 ��

�
�

0

$

%

&

�	'	���	�

�	�

���	�

�	'	���	

�	'	���	�

���
��	
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

26

26

www.picaxe.co.uk

��
#�����	�	'	/��
��	#��	'	��2�����
#�����	
#�����	�
#�����	�
#�����	�
#�����	&

�
/��
��	��

�*�	�	'	�����	�
��2��
�	'	�����	�

�����	�
�����	

�*�	�	'	�����	�

�

�

�

&

%

$

 �

 �

 �

 �

1

0

�������
�

PICAXE-14M Pinout and Circuit

The pinout diagrams for the 14 pin devices are as follows:

(0.3” DIL or 150mil SOIC)

Please see appendix C for information on how the 14M i/o pins can be reconfigured

by advanced users.

The minimum operating circuit for the 14 pin devices is:

See the USB / Serial Download Circuit section of this manual for more details

about the download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

2) Output pin 0 (leg 7) is used during the program download, but can also be

used as a general purpose output once the download is complete. On the

project boards a jumper link allows the microcontroller leg to either be

connected to the download socket (PROG position) or to the output (OUT

position). Remember to move the jumper into the correct position when

testing your program!

If you are making your own pcb you can include a similar jumper link or small

switch, or you may prefer to connect the microcontroller leg to both the output

device and the program socket at the same time. In this case you must remember

that your output device will rapidly switch on and off as the download takes

place (not a problem with simple outputs like LEDs, but could cause problems

with other devices such as motors).

 �

�

�

�

&

%

$

&�

��

���
��	���

���

 ��

�
�

 �

 �

 �

 �

1

0

�	�

�	�

�	�

�	

�	�

���	�

���	

���	�

���	�

���	�

���	&

���
��	
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

27

27

www.picaxe.co.uk

PICAXE-20M/20X2 Pinout and Circuit

The pinout diagrams for the 20 pin devices are as follows:

(0.3” DIL or 300mil SOIC)

��
/��
��	#��
#�����	�	'	��2�����
#�����	
#�����	�
#�����	�
#�����	�
#�����	&
#�����	%
#�����	$

�
/��
��	��

�*�	$	'	�����	$
�����	%
�����	&
�����	�

�*�	�	'	�����	�
�*�	�	'	�����	�
�*�	 	'	�����	
��2��
�	'	�����	�

�

�

�

&

%

$

0

1

 �

��

 1

 0

 $

 %

 &

 �

 �

 �

���������

Note pin C.6 is input only on the 20X2 part. This is due to the internal silicon

design of the chip and cannot be altered.

��
�4�	'	/��
��	#��
+4�	'	�*� 	'	(
��
+4 	'	�*��	'	(
���	'	/�6
+4�	'	�*��	'	��
+4�	'	�*�&	'	��5
+4�	'	�*�%	'	(�")	*	'	� 5
+4&	'	�*� �	'	(
��	���	'	(��
	��

+4%	'	�*� 	'	(���
�
+4$	'	(
��	���	'	(��
	���

�
/��
��	��

�*��	'	�4$
�4%

(�")	�	'	�")	�4&	'	�4&
("�)	+	'	/�76	'	�4�
(�")	�	'	�*�$	'	�4�

��	���	'	�*�0	'	�4�
(��
	���	'	��	����	'	�*�1	'	�4

(������	'	�4�

�

�

�

&

%

$

0

1

 �

��

 1

 0

 $

 %

 &

 �

 �

 �

�����������

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

28

28

www.picaxe.co.uk

The minimum operating circuit for the 20 pin devices is:

See the USB / Serial Download Circuit section of this manual for more details

about the download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

��

�

�

�

&

%

$

0

1

 �

&�

��

���
��	���

���

 ��

�
�

��

 1

 0

 $

 %

 &

 �

 �

 �

�	$

�	%

�	&

�	�

�	�

�	�

�	

�	�

���	�

���	

���	�

���	�

���	�

���	&

���	%

���	$

���
��	
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

29

29

www.picaxe.co.uk

PICAXE-18/18A/18M/18X Pinout and Circuit

The pinout diagrams for the 18 pin devices are as follows:

(0.3” DIL or 300mil SOIC)

The minimum operating

circuit for the 18 pin devices is:

See the USB / Serial Download Circuit section of this manual for more details

about the download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

2) The reset pin must be tied high with the 4k7 resistor to operate.

3) No external resonator is required as the chips have an internal resonator.

�
��
�
�
�
5
0

�

�

�

&

%

$

0

1

��$

�����

&�

��

���
��	���

���
��	
�
���

 ��

�
�

 0

 $

 %

 &

 �

 �

 �

 �

�	�

���	�

���	

���	�

���	�

�	

�	�

�	$

�	%

���	$

���	%

���	&

���	�

�����	 	'	�*�	
�����	�	'	�*�	�
�����	$
�����	%
�
#�����	$
#�����	%
#�����	&
#�����	�

�*�	�	'	�����	�
/��
��	#��
/��
��	��
�����

��
#�����	�
#�����	
#�����	�
#�����	�

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	
�����	 	'	�*�	
�����	�	'	�*�	�	'	��2��
�
�����	$	'	��3�����	����
�����	%	'	��3�����	�����
�
#�����	$
#�����	%
#�����	&
#�����	�

�*�	�	'	�����	�
/��
��	#��
/��
��	��
�����

��
#�����	�
#�����	
#�����	�
#�����	�

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	�

�*�	�	'	�����	�
/��
��	#��
/��
��	��
�����

��
#�����	�

#�����	 	'	
��	���
#�����	�

#�����	�	'	�")	�

�����	 	'	�*�	
�����	�	'	�*�	�	'	��2��
�
�����	$	'	��3�����	����
�����	%	'	��3�����	�����
�
#�����	$
#�����	%
#�����	&
#�����	�	'	
��	���

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	�
�*�	�	'	�����	�

/��
��	#��
/��
��	��
�����

��
#�����	�	'	
�2�����

#�����	
#�����	�

#�����	�	'	�")	�

�����	 	'	�*�	
�����	�	'	�*�	�	'	��2��
�
�����	$	'	��3�����	����
�����	%	'	��3�����	�����
�
#�����	$
#�����	%
#�����	&
#�����	�

�

�

�

&

%

$

0

1

 0

 $

 %

 &

 �

 �

 �

 �

�������
	

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

30

30

www.picaxe.co.uk

PICAXE-28A/28X/28X1/28X2 Pinout and Circuit

The pinout diagrams for the 28 pin devices are as follows:

(0.3” DIL or 300mil SOIC)

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�
�
��
��$	'	#��	�$	'	��3�����	����
��%	'	#��	�%	'	��3�����	�����
��	&	'	#��	�&
��	�	'	#��	��	'	
��	���

�����
�*�	�	'	��	��
�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

��
���������
���������

���	'	#��	��	'	��2��
�
��	 	'	#��		� 	'	�")	
��	�	'	#��	��	'	�")	�
��	�	'	#��		��	'	
��	���

��������	�

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�
�
��
�����	$	'	>�3�����	����
�����	%	'	>�3�����	�����
�����	&
�����	�

�����
�*�	�
�*�	
�*�	�
�*�	�

/��
��	��
/��
��	#��

��
���������
���������

�����	�	'	��2��
�
�����	
�����	�
�����	�

��������	�

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

#�����	$
#�����	%
#�����	&
#�����	�	'	(�")	*
#�����	�
#�����	�	'	(�")	+
#�����	 	'	(�")	�
#�����	�
�
��
��	$	'	#��	�$	'	(���
�	'	��	����
��	%	'	#��	�%	'	(������	'	��	���
��	&	'	#��	�&	'	��
	���
��	�	'	#��	��	'	
��	���	'	��
	��

�����
,-�.,	'	�*�	�	'	��	��

�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

��
���������
���������

�
)��	���	'	#��	��	'	��	�
�")	 	'	#��	� 	'	��	

(�")	�	'	�")	�	'	#��	��	'	��	�
��
	���	'	
��	���	'	#��	��	'	��	�

��������	�

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

+4$
+4%
+4&
+4�	'	�*� 	'	8(�")	*9
+4�	'	�*�1
+4�	'	�*�0	'	(
���	'	8(�")	+9
+4 	'	�*� �	'	(
�� 	'	8(�")	�9
+4�	'	�*� �	'	(
���
�
��
�4$	'	(���
�	'	��	����
�4%	'	(������	'	��	���
�4&	'	(��
	���
�4�	'	(
��	���	'	(��
	��

�����
� 5	'	�*��	'	�4�
��5	'	�*� 	'	�4
��	'	�*��	'	�4�
� 	'	�*��	'	�4�

/��
��	��
/��
��	#��	'	�4�

��
���������
���������

�
)��	���	'	�4�
�")	�4 	'	�4

8(�")	�9	'	�")	�4�	'	�4�
(
��	���	'	(��
	���	'	�4�

��������	��

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

31

31

www.picaxe.co.uk

�
��
�
�
�
5�
0

�

�

�

&

%

$

0

1

 �

 �

 �

 �

��$

�����

&�

��

���
��	
�

���
��	���

���

 ��

�
�

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

�*�	�

�*�	

�*�	�

�*�	�

�	�

�	

�	�

�	�

���	$

���	%

���	&

���	�

���	�

���	�

���	

���	�

�	$

�	%

�	&

�	�

�=;B

The minimum operating circuit for the 28 pin devices is:

See the USB / Serial Download Circuit section of this manual for more details

about the download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

2) The reset pin must be tied high with the 4k7 resistor to operate.

3) Resonator:

28X2 (optional) 4 (16), 8(32), or 10(40) MHz

28X2-3V (optional) 4 (16), 8(32), 10 (40) or 16(64) MHz

28X1 (optional) 16MHz

28X 4, 8 or 16MHz

28 / 28A 4MHz

The 28X1 and 28X2 have an internal resonator (4 or 8MHz) and so the external

resonator is optional. On 28A and 28X parts it is compulsory.

The 28X2 has an internal 4xPLL circuit. This multiplies the external clock speed

by 4. Therefore an external 8MHz resonator gives an actual internal operating

clock frequency of 4x8MHz=32MHz.

IMPORTANT NOTE - this manual describes use of the standard range (3-5V) parts.

The X2 parts are also available in special low power (1.8V to 3.3V) variants. Use of a

5V supply on a 3.3V part will permanently damage it!

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

32

32

www.picaxe.co.uk

��7	8$5 ��9
��
�����
&�
+4$
+4%
+4&
+4�	'	�*�	 	'	8(�")	*9
+4�	'	�*�	1
+4�	'	�*�	0	'	(
���	'	8(�")	+9
+4 	'	�*�	 �	'		(
�� 	'	8(�")	�9
+4�	'	�*�	 �	'	(
���
�4�	'	�*�	�	'	��
�4�	'	�*�	�	'	�

/��
��	#��	'	��
/��
��	��

-�*
��

�
)��	���	'	�4�
�")	�4 	'	�4

8(�")	�9	'	�")	�4�	'	�4�
(��
	���	'	(
��	���	'	�4�
(
��	���	'	(��
	��
	'	�4�

(��
	���	'	�4&
(������	'	��	���	'	�4%
(���
�	'	��	����	'	�4$

� 5	'	�*�	�	'	�4�
��5	'	�*�	 	'	�4

��������	��������
�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

�

�

�

&

%

$

0

1

 �

 �

 �

 �

���������	2��
�����$,/+	��
�����%	���
��
��"�����	�����

&�	&��)�	��"
�������	��@������

������5�0��

�����	�"
��(

-�*

��=;B	80��9
���������

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

�

�

�

&

%

$

0

1

 �

 �

 �

 �

PICAXE-28X2 Module (AXE200)

The 28X2 module is a complete PICAXE circuit in convenient 28 pin (0.6” wide)

DIL package. The module is designed to be placed in a ‘turned pin’ style IC

socket on the end user project board (e.g. socket part ICH028W).

Notes:

The module is supplied in a 28 pin carrier socket. It is highly recommended that

the module is left in this socket at all times - ie use a separate socket on the

project board. Then if a leg is accidentally snapped off the carrier socket it is

possible to very carefully remove and replace the low-cost carrier socket.

Power can be supplied at 7-12V DC via pin 28. This is then regulated on-board

via a 5V 500mA low drop out regulator. The 5V output is available at pin 25.

Alternately a 4.5V or 5V supply can be connected directly to pin 25, leaving pin

28 unconnected.

There is an on -board reset switch (with 4k7 pull up included on -board). The

module can also be reset by connecting the reset pin (pin 26) to 0V.

Download can be made via the on-board socket (AXE027 USB or AXE026 serial

download cable) or via the Serial In / Serial Out pins.

The LED pin (pin 3) connects to an on-board LED/330R resistor which then

connects to 0V. If left unconnected the LED does not operate, and hence draws no

current (sometimes desirable in battery based systems). To use the LED as a

power indicator simply connect the LED pin (pin 3) to 5V (pin 25). Alternately

the LED pin can be connected to an output pin and hence controlled by high /

low commands within the user program.

28X2 Module -

part AXE200

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

33

33

www.picaxe.co.uk

PICAXE-40X/40X1/40X2 Pinout and Circuit

The pinout diagram for the 40 pin device is as follows:

(0.6” DIL or 44pin TQFP)

7
��
	�
��

��
��
��

7
��
	�
��

��
��
��

�
*
�

	'	
+
4�

+
4&

+
4%

+
4$

�
��
��

�
 5
	'	
�
*
�
�	
'	�

4�
�
�5
	'	
�
*
�
 	
'	�

4
�
�

	'	
�
*
�
�	
'	�

4�
�

	'	
�
*
�
�	
'	�

4�

(���
�	'	�4$
*4�

(�")	+	'	*4&
��	���	'	(�")	�	'	*4%

��	����	'	(�")	*	'	*4$
��
�

(
���	'	�*� �	'	+4�
(
�� 	'	�*� �	'	+4
(
���	'	�*�0	'	+4�

�*�1	'	+4�

7��	���������
�4�	'	�
)��	���
���������
���������
��
�
�4$	'	�*�$
�4%	'	�*�%
�4&	'	�*�&
�4�	'	/��
��	#��
/��
��	��

�
4%
	'	
(�
��
��

�
�
4&
	'	
(�
�

	�
��

�
4�
	'	
(

��
	�
��

	'	
(�
�

	�
�

*
4�

*
4�

*
4

*
4�

�
4�
	'	
(�

�	
��
�	'
	(
��

	�
��

�
4�
	'	
(�

"
)
	�
	'	
�"

)
	�
4�

�
4
	'	
#
��
	�
 	
'	�

"
)
	�
4

7
��
	�
��

��
��
��

�� �� �� � �� �1 �0 �$ �% �& ��

��

��

�

��

�1

�0

�$

�%

�&

��

��

 � � � & % $ 0 1 �� � ��

�

�

�

&

%

$

0

1

 �

�����������
�������������

+4$
+4%
+4&
+4�	'	�*�
+4�	'	�*�1
+4�	'	�*�0			'	(
���
+4 	'	�*� �	'	(
��
+4�	'	�*� �	'	(
���
�
��
*4$	'	(�")	*	'	��	����
*4%	'	(�")	�	'	��	���
*4&	'	(�")	+
*4�
�4$	'	(���
�
�4%	'	(������
�4&	'	(��
	���
�4�	'	(
��	���	'	(��
	��

*4�
*4�

�����
� 5	'	�*��	'	�4�
��5	'	�*� 	'	�4
��	'	�*��	'	�4�
� 	'	�*��	'	�4�

/��
��	��
/��
��	#��	'	�4�

�*�&	'	�4&
�*�%	'	�4%
�*�$	'	�4$

�
��

���������
���������

�
)��	���	'	�4�
�")	�4 	'	�4

(�")	�	'	�")	�4�	'	�4�
(
��	���	'	(��
	���	'	�4�

*4�
*4

�����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

34

34

www.picaxe.co.uk

7
��
	�
��

��
��
��

7
��
	�
��

��
��
��

#
��
��

�	�
#
��
��

�	&
#
��
��

�	%
#
��
��

�	$
�
��
��

,
-�

.
,
	'	
�
*
�
	�
	'	
��
	�
�

�
*
�
	
	'	
��
	�

�
*
�
	�
	'	
��
	�
�

�
*
�
	�
	'	
��
	�
�

��	�$	'	#��	�$	'	(���
�
�����	�
�����	&

�����	%	'	��	���
�����	$	'	��	����

��
�

#�����		�
#�����	
#�����	�
#�����	�

7��	���������
��	��	'	#��	��	'	�
)��	���
���������
���������
��
�
�*�	$
�*�	%
�*�	&
/��
��	#��
/��
��	��

��
	�
%	
'	#

��
	�
%	
'	(

��
��
��

��
	�
&	
'	#

��
	�
&	
'	�
�

	�
��

��
	�
�	
'	#

��
	�
�	
'	

��
	�
��

	'	
��

	�
�

��
��

�	�
��
��

�	�
��
��

�	
��
��

�	�
��
	�
�	
'	#

��
	�
�	
'	�

�	
��
�	'
	�
�

	�
��

��
	�
�	
'	#

��
	�
�	
'	�

"
)
	�

��
	�
 	
'	#

��
	�
 	
'	�

"
)
	

7
��
	�
��

��
��
��

�� �� �� � �� �1 �0 �$ �% �& ��

��

��

�

��

�1

�0

�$

�%

�&

��

��

 � � � & % $ 0 1 �� � ��

�

�

�

&

%

$

0

1

 �

����������

�������������

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�
�
��
�����	$	'	��	����
�����	%	'	��	���
�����	&
�����	�
��	�$	'	#��	�$	'	(���
�
��	�%	'	#��	�%	'	(������
��	�&	'	#��	�&	'	��
	���
��	��	'	#��	��	'	
��	���	'	��
	��

�����	�
�����	�

�����
,-�.,	'	�*�	�	'	��	��

�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

�*�	&
�*�	%
�*�	$

�
��

���������
���������

�
)��	���	'	#��	��	'	��	��
�")	 	'	#��	� 	'	��	�
�")	�	'	#��	��	'	��	��

��	���	'	��
	���	'	#��	��	'	��	��
�����	�
�����	

����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

35

35

www.picaxe.co.uk

The minimum operating circuit for the 40 pin device is the same as the 28 pin

minimum circuit (altering the appropriate pin numbers as required).

See the USB / Serial Download Circuit section of this manual for more details

about the download circuit.

Notes:
1) The 10k/22k resistors must be included for reliable operation.

 DO NOT leave the serial in pin floating as THE PROGRAM WILL NOT RUN!

2) The reset pin must be tied high with the 4k7 resistor to operate.

3) Resonator:

40X2 (optional) 4 (16), 8(32), or 10(40) MHz

40X2-3V (optional) 4 (16), 8(32), 10 (40) or 16(64) MHz

40X1 (optional) 16MHz

40X 4, 8 or 16MHz

The 40X1 and 40X2 have an internal resonator (4 or 8MHz) and so the external

resonator is optional. On 40X parts it is compulsory.

The 40X2 has an internal 4xPLL circuit. This multiplies the external clock speed

by 4. Therefore an external 4MHz resonator gives an actual internal operating

clock frequency of 4x4MHz=16MHz.

IMPORTANT NOTE - this manual describes use of the standard range (3-5V) parts.

The X2 parts are also available in special low power (1.8V to 3.3V) variants. Use of a

5V supply on a 3.3V part will permanently damage it!

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�
�
��
�����	$	'	��3�����	����
�����	%	'	��3�����	�����
�����	&
�����	�
��	�$	'	#��	�$
��	�%	'	#��	�%
��	�&	'	#��	�&
��	��	'	#��	��	'	
��	���
�����	�
�����	�

�����
�*�	�	'	��	��
�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

�*�	&
�*�	%
�*�	$

�
��

���������
���������

��	��	'	#��	��
��	� 	'	#��		� 	'	�")	
��	��	'	#��	��	'	�")	�
��	��	'	#��		��	'	
��	���

�����	�	'	��2��
�
�����	

����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

36

36

www.picaxe.co.uk

USB Download Circuit

The USB download circuit is identical for all PICAXE chips. It consists of 3 wires

from the PICAXE chip to the AXE027 USB cable. One wire sends data from the

computer to the serial input of the PICAXE, one wire transmits data from the

serial output of the PICAXE to the computer, and the third wire provides a

common ground.

Note this circuit can also be used for the AXE026 serial cable. Therefore the same

circuit can be used with either USB or serial cable.

The minimum download circuit is shown here.

Note that the two resistors are not a potential divider. The 22k resistor works with

the internal microcontroller diodes to clamp the serial voltage to the PICAXE

supply voltage and to limit the download current to an acceptable limit. The 10k

resistor stops the serial input ‘floating’ whilst the download cable is not

connected. This is essential for reliable operation.

The two download resistors must be included on every PICAXE circuit (i.e. not

built into the cable). The serial input must never be left unconnected. If it is left

unconnected the serial input will ‘float’ high or low and will cause unreliable

operation, as the PICAXE chip will receive spurious floating signals which it may

interpret as a new download attempt.

�
�

�
�

� ������

���
��	���
���
��	
�
�����

 ��

���!�	!
�"

�

�

�

�

�
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

37

37

www.picaxe.co.uk

Serial Download Circuit

The serial download circuit is identical for all PICAXE chips. It consists of 3 wires

from the PICAXE chip to the AXE026 serial cable. One wire sends data from the

computer to the serial input of the PICAXE, one wire transmits data from the

serial output of the PICAXE to the computer, and the third wire provides a

common ground. See the USB adapter section for details on how to use the USB

port adapter.

The minimum download circuit is shown here. This circuit is appropriate for

most educational and hobbyist work.

Note that the two resistors are not a potential divider. The 22k resistor works with

the internal microcontroller diodes to clamp the serial voltage to the PICAXE

supply voltage and to limit the download current to an acceptable limit. The 10k

resistor stops the serial input ‘floating’ whilst the download cable is not

connected. This is essential for reliable operation.

The two download resistors must be included on every PICAXE circuit (i.e. not

built into the cable). The serial input must never be left unconnected. If it is left

unconnected the serial input will ‘float’ high or low and will cause unreliable

operation, as the PICAXE chip will receive spurious floating signals which it may

interpret as a new download attempt.

�
�

�
�

� ������

���
��	���
���
��	
�
�����

 ��

���!�	!
�"

������

���
��	���
���
��	
�
�����

 ��

�
�

�
�

�

�

�

�4	��	������	���
��	���
�4	��	������	���
��	
�
&4	��	������	��

1	.�3	*	2�)���	��������)�����

�

�
�

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

38

38

www.picaxe.co.uk

Enhanced Serial Download Circuit

The BAT85 Shokkty diode operate at a lower device voltage than the internal

microcontroller diodes, providing a more accurate voltage reference. The

additional 180R resistor provides additional preventative short circuit and static

protection on the serial output pin.

Not required when the AXE027 USB cable is used.

Download Cables

The USB download cable (AXE027) is recommended for all modern computers.

It is compatible with any computer with a USB port.

The standard serial download cable (part AXE026) consists

of a 3.5mm stereo plug, which mates with a stereo socket

(part CON039) on the project board. This type of

connection is more robust and reliable than the Molex

header in the educational environment.

Individual hobbyists may prefer a standard 3 pin Molex

0.1" (2.54 mm) 3 pin header. A matching cable (part AXE025) is available. This

cable is not recommended for the educational environment.

All serial computer connection is via the serial port (9 pin D connector).If you

have a very old computer with a 25pin serial port, you require a 25-9 pin adapter

(part ADA010), which are also available from most high street computer stores.

�
�

�
�

� ������

���
��	���
���
��	
�
�����

 ��

���!�	!
�"

 0�

+�?0&

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

39

39

www.picaxe.co.uk

Reset Circuit

All 18, 28 and 40 pin PICAXE have a ‘reset’ pin. This pin must be in the high

condition for the PICAXE microcontroller to function. If this pin is left

unconnected the microcontroller will not operate reliably. To tie this pin high

connect a 4.7k resistor between the reset pin and V+ supply rail (do not connect

the pin directly to V+, always use a resistor). A reset switch is optional, but highly

recommended. This should be a ‘push to make’ type and connected between the

reset pin and 0V.

All 8, 14 and 20 pin PICAXE do not have a reset pin. Therefore to reset the

microcontroller the power supply must be disconnected and then reconnected.

Note that, when using capacitors in your supply circuit, these capacitors may hold

enough charge to keep the microcontroller powered for several seconds after the

power supply is disconnected.

Resonator

Different PICAXE chips have internal or external (or both) options:

PICAXE INTERNAL EXTERNAL
08 4 -

08M 4,8 -

14M 4,8 -

18 4 -

18A 4,8 -

18M 4,8 -

18X 4,8 -

20M 4,8 -

20X2 4,8,16,32,64 -

28A - 4

28X - 4,8,16

28X1 4,8 4,8,16

28X2 4,8 4 (=16), 8 (=32), 10 (=40)

28X2-3V 4,8,16 4 (=16), 8 (=32), 10 (=40), 16 (=64)

40X - 4,8,16

40X1 4,8 4,8,16

40X2 4,8 4 (=16), 8 (=32), 10 (=40)

40X2-3V 4,8,16 4 (=16), 8 (=32), 10 (=40), 16 (=64)

All 28 and 40 pin PICAXE can use an external resonator (the resonator is internal

within the 08, 14, 20 and 18 pin PICAXE). Note that the internal resonator

within the 08,14,20 and 18 PICAXE is not quite as accurate as an external

resonator. Although this does not cause any issues with the majority of projects, if

a specialised project requires very high precision a 28 or 40pin PICAXE should be

used.

An 3 pin ceramic resonator is recommended when required. This device consists

of a resonator and two loading capacitors in a single 3 pin package. The centre

pin is connected to 0V and the outer two pins to the two PICAXE resonator pins

(the resonator can be used either way around).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

40

40

www.picaxe.co.uk

All parts default to 4MHz internal operation, apart from the X2 parts which

default to 8MHz internal operation.

If desired the PICAXE can be ‘over-clocked’ by use of an 8MHz or 16MHz

resonator. See the ‘Over-clocking’ section for more details.

The 28X2 and 40X2 contain an internal 4xPLL circuit. This means that the

internal operating frequency is 4x the external resonator frequency. The

maximum speed of these devices is therefore 64MHz (using a 16MHz resonator).

If desired a 2 pin resonator, or 2 pin crystal, can be used with X, X1 or X2 parts. In

this case two appropriate loading capacitors must also be used with the

resonator/crystal. See the crystal manufacturer’s datasheet for more information.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

41

41

www.picaxe.co.uk

Testing the System

This first simple program can be used to test your system. It requires the

connection of an LED (and 330R resistor) to output pin 4. If connecting the LED

directly to a PICAXE chip on a proto (or home-made) board, connect the LED

between the output pin and 0V. When using the project boards (e.g. as supplied

within the 18 and 28 starter packs), connect the LED between V+ and the output

connector, as the output is buffered by the darlington driver chip on the project

board. (Make sure the LED is connected the correct way around!).

1. Connect the PICAXE cable to the computer USB/serial port. Note which port

it is connected to (e.g. COM1 or COM2).

2. Start the Programming Editor software.

3. Select View>Options to select the Options screen (this may automatically

appear).

4. Click on the ‘Mode’ tab and select the correct PICAXE type.

5. Click on the ‘Serial Port’ tab and select the serial port (virtual COM port for

USB cable) that the PICAXE cable is connected to.

6. Click ‘OK’

7. Type in the following program:

main: high 4

pause 1000

low 4

pause 1000

goto main

(NB note the colon (:) directly after the label ‘main’ and the spaces between

the commands and numbers)

8. Make sure the PICAXE circuit is connected to the serial cable, and that the

batteries are connected. Make sure the LED and 330R resistor are connected

to output 4.

9. Select PICAXE>Run

A download bar should appear as the program downloads. When the

download is complete the program should start running automatically – the

LED on output 4 should flash on and off every second.

If your program does not download use the check list and hard-reset procedure

described in the next two sections to isolate the mistake.

��

����

������	�
�	�
�

����

�������	�����
������	�

�������
��

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

42

42

www.picaxe.co.uk

Hard-reset procedure

The download process involves the PICAXE microcontroller regularly checking

the serial input line for a new download signal from the computer. This is

automatic and not noticed by the PICAXE user. However there can be rare

occasions when the PICAXE does not check the serial input line quickly enough

whilst running its program. These situations can include:

• Corrupt program in PICAXE (e.g. if power or cable removed part way through

a new download)

• Incorrect clock frequency (set by setfreq command)

• Pause or wait commands longer than 5 seconds used in program.

• Use of serin, infrain or keyin within program.

Fortunately it is very simple to resolve this issue, as the very first thing any

PICAXE chip does on power reset is check for a new computer download.

Therefore if you reset the PICAXE whilst a download is being started by the

computer, the new download will always be recognised. This process is called a

hard-reset.

To perform a hard-reset using the reset switch (18, 28, 40 pin PICAXE):

1) Press and hold down the reset switch.

2) Click the PICAXE>Run menu to start a download.

3) Wait until the progress-bar appears on screen.

4) Wait 1 second then release the reset switch.

To perform a hard reset using the power supply (all sizes):

1) Disconnect the power supply.

2) Wait until all power supply decoupling capacitors have discharged (can take

up to 30 seconds or more depending on circuit design).

3) Click the PICAXE>Run menu to start a download.

4) Wait until the progress-bar appears on screen.

5) Reconnect the power supply

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

43

43

www.picaxe.co.uk

Download CheckList

If you cannot download your program, check the following items. Remember

that all new PICAXE are pre-programmed and tested, therefore if a new chip does

not download it is generally a hardware setup issue.

If the program fails part way through a download this is generally a power supply

issue (or loose cable connection). Try with 3 new alkaline cells giving exactly

4.5V.

PICAXE microcontroller
• Is the correct PICAXE chip correctly inserted in socket

• Is a PICAXE chip (not blank un-programmed PIC chip) being used.

• Is a damaged PICAXE chip being used (e.g. chip that has had over-voltage or

reverse power supply applied)

• Is a smooth 4.5V to 5.5V DC supply correctly connected. TEST ON ACTUAL

CHIP V+ and 0V pins with a multimeter!

• Is the reset pin connected to V+ via 4.7k resistor (18 / 28 / 40 pin chips)

• Is the correct 3 pin resonator connected if required (28 / 40 pin chips)

• Are the serial download 10k/22k resistors correctly connected.

Software
• Latest version Programming Editor installed (v5.2.0 or later, see software page

at www.picaxe.co.uk for up to date information)

• Correct serial port selected (View>Options>Port menu).

• Correct resonator speed selected (if appropriate) (View>Options>Mode

menu)

• No conflicting serial port software running on computer (in particular PDA

type ‘hotsync’ software and interactive whiteboard software)

Serial Download Cable(part AXE026)
• Correctly wired download cable.

• Correctly wired download socket with 10k/22k resistors.

• All download socket pins correctly soldered to PCB.

• Download cable correctly connected between computer and microcontroller.

• Download cable inserted fully into socket.

USB Download Cable (part AXE027)
• USB cable configured to use correct serial port

• USB cable installed with correct driver (Vista / XP users - ensure you are using

the correct XP specific driver (also valid for Vista), available from the software

page at www.picaxe.co.uk)

USB adapter (part USB010)
• USB adapter configured to use correct serial port

• USB adapter installed with correct driver (XP users - ensure you are using the

correct XP specific driver, available from the software page at

www.picaxe.co.uk)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

44

44

www.picaxe.co.uk

Understanding the PICAXE memory.

The PICAXE memory consists of three different areas. The amount of memory

varies between PICAXE types.

Program Memory.
Program memory is where the program is stored after a new download. This is

‘FLASH’ rewritable memory that can be reprogrammed up to (typically) 100,000

times. The program is not lost when power is removed, so the program will start

running again as soon as the power is reconnected.

It is not generally required to erase a program, as each download automatically

over-writes the whole of the last program. However if you want to stop a program

running you can use the PICAXE>Clear Hardware Memory menu to download an

‘empty’ program into the PICAXE.

On standard PICAXE chips (X, X1) you can download around 600/1000 lines of

BASIC code. On A or M revision parts you can download around 80 lines and on

educational parts around 40 lines. X2 parts support up to 4 programs of 1000

lines. Note these values are approximate as different commands require different

amounts of memory space. To check your memory usage use the PICAXE>Check

Syntax menu option.

On X1 and X2 parts 256 bytes of the program memory can also be ‘reserved’ as a

lookup table (e.g. for LCD messages). See the table / readtable commands in part

2 of the manual for more details.

Data Memory
Data memory is additional storage space within the microcontroller. The data is

also not lost when power is removed. Each download resets all data bytes to 0,

unless the EEPROM command has been used to ‘preload’ data into the data

memory. See the EEPROM, read and write command descriptions for more

details.

On the PICAXE-08 / 08M / 14M / 20M / 18 / 18M the data memory is ‘shared’

with the program memory Therefore larger programs will result is a smaller

available data memory area.

On all other PICAXE chips the data and program memory are completely

separate.

RAM (Variables)
The RAM memory is used to store temporary data in variables as the program

runs. It loses all data when the power is removed. There are four types of variable

- general purpose, storage, scratchpad and special function.

Variables are memory locations within the PICAXE microcontroller that store

data whilst the program is running. All this information is lost when the

microcontroller is reset.

For information about variable mathematics see the ‘let’ command information

in part 2 of the manual.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

45

45

www.picaxe.co.uk

General Purpose Variables.
There are 14 or more general purpose byte variables. These byte variables are

labelled b0, b1 etc. Byte variables can store integer numbers between 0 and 255.

Byte variables cannot use negative numbers or fractions, and will ‘overflow’

without warning if you exceed the 0 or 255 boundary values (e.g. 254 + 3 = 1)

(2 - 3 = 255)

However for larger numbers two byte variables can be combined to create a word

variable, which is capable of storing integer numbers between 0 and 65535.

These word variables are labelled w0, w1 etc, and are constructed as follows:

w0 = b1 : b0

w1 = b3 : b2

w2 = b5 : b4

w3 = b7 : b6

w4 = b9 : b8

w5 = b11 : b10

w6 = b13 : b12 etc.

Therefore the most significant byte of w0 is b1, and the least significant byte of

w0 is b0.

In addition bytes b0 and b1 (w0) are broken down into individual bit variables.

These bit variables can be used where you just require a single bit (0 or 1) storage

capability.

b0 = bit7: bit6: bit5: bit4: bit3: bit2: bit1: bit0

b1 = bit15: bit14: bit13: bit12: bit11: bit10: bit9: bit8

X1 and X2 parts also support bit16-bit31 (b2-b3)

You can use any word, byte or bit variable within any mathematical assignment

or command that supports variables. However take care that you do not

accidentally repeatedly use the same ‘byte’ or ‘bit’ variable that is being used as

part of a ‘word’ variable elsewhere.

All general purpose variables are reset to 0 upon a program reset.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

46

46

www.picaxe.co.uk

Storage Variables.
Storage variables are additional memory locations allocated for temporary storage

of byte data. They cannot be used in mathematical calculations, but can be used

to temporarily store byte values by use of the peek and poke commands.

The number of available storage locations varies depending on PICAXE type. The

following table gives the number of available byte variables with their addresses.

These addresses vary according to technical specifications of the microcontroller.

See the poke and peek command descriptions for more information.

PICAXE-08 none

PICAXE-08M 48 80 to 127 ($50 to $7F)

PICAXE-14M 48 80 to 127 ($50 to $7F)

PICAXE-18 48 80 to 127 ($50 to $7F)

PICAXE-18A/18M 48 80 to 127 ($50 to $7F)

PICAXE-18X 96 80 to 127 ($50 to $7F), 192 to 239 ($C0 to $EF)

PICAXE-20M 48 80 to 127 ($50 to $7F)

PICAXE-20X2 72 56 to 127 ($38 to $7F)

PICAXE-28A 48 80 to 127 ($50 to $7F)

PICAXE-28X 112 80 to 127 ($50 to $7F), 192 to 255 ($C0 to $FF)

PICAXE-28X1 95 80 to 126 ($50 to $7E), 192 to 239 ($C0 to $EF)

PICAXE-28X2 200 56 to 255 ($38 to $FF)

PICAXE-40X 112 80 to 127 ($50 to $7F), 192 to 255 ($C0 to $FF)

PICAXE-40X1 95 80 to 126 ($50 to $7E), 192 to 239 ($C0 to $EF)

PICAXE-40X2 200 56 to 255 ($38 to $FF)

Scratchpad
PICAXE-20X2 128 0 to 127 ($00 to $7F)

PICAXE-28X1 128 0 to 127 ($00 to $7F)

PICAXE-28X2 1024 0 to 1023 ($00 to $3FF)

PICAXE-40X1 128 0 to 127 ($00 to $7F)

PICAXE-40X2 1024 0 to 1023 ($00 to $3FF)

Special Function Variables (SFR)
The special function variables available for use depend on the PICAXE type.

PICAXE-08 / 08M SFR
pins = the input / output port

dirs = the data direction register (sets whether pins are inputs or outputs)

infra = another term for variable b13, used within the infrain2 command

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = x : x : x : pin4 : pin3 : pin2 : pin1 : x

The variable dirs is also broken down into individual bits.

Only valid bi-directional pin configuration bits are implemented.

dirs = x : x : x : dir4 : x : dir2 : dir1 : x

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

47

47

www.picaxe.co.uk

PICAXE-14M/20M SFR
pins = the input port when reading from the port

(out)pins = the output port when writing to the port

infra = a separate variable used within the infrain command

keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.

let pins = %11000011

will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that

let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this

type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = x : x : x : pin4 : pin3 : pin2 : pin1 : pin0 (14M)

pins = pin7 : pin6 : pin5 : pin4 : pin3 : pin2 : pin1 : pin0 (20M)

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

outpins = x : x : outpin5 : outpin4 :

outpin3 :out pin2 : outpin1 : outpin0 (14M)

outpins = outpin7 : outpin6 : outpin5 : outpin4 :

outpin3 :out pin2 : outpin1 : outpin0 (20M)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

48

48

www.picaxe.co.uk

PICAXE-18 / 18A / 18M / 18X SFR
pins = the input port when reading from the port

(out)pins = the output port when writing to the port

infra = a separate variable used within the infrain command

keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.

let pins = %11000011

will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that

let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this

type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = pin7 : pin6 : x : x : x : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

49

49

www.picaxe.co.uk

PICAXE-28 / 28A / 28X SFR

pins = the input port when reading from the port

(out)pins = the output port when writing to the port

infra = a separate variable used within the infrain command

keyvalue = another name for infra, used within the keyin command

Note that pins is a ‘pseudo’ variable that can apply to both the input and output

port.

When used on the left of an assignment pins applies to the ‘output’ port e.g.

let pins = %11000011

will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment pins applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

Additionally, note that

let pins = pins

means ‘let the output port equal the input port’

To avoid this confusion it is recommended that the name ‘outpins’ is used is this

type of statement e.g.

let outpins = pins

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = pin7 : pin6 : pin5 : pin4 : pin3 : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

outpins = outpin7 : outpin6 : outpin5 : outpin4 :

outpin3 : out pin2 : outpin1 : outpin0

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

50

50

www.picaxe.co.uk

PICAXE-28X1 / 40X1 SFR

pins = the input port when reading from the port

outpins = the output port when writing to the port

ptr = the scratchpad pointer

@ptr = the scratchpad value pointed to by ptr

@ptrinc = the scratchpad value pointed to by ptr (post increment)

@ptrdec = the scratchpad value pointed to by ptr (post decrement)

flags = system flags

When used on the left of an assignment ‘outpins’ applies to the ‘output’ port e.g.

let outpins = %11000011

will switch outputs 7,6,1,0 high and the others low.

When used on the right of an assignment ‘pins’ applies to the input port e.g.

let b1 = pins

will load b1 with the current state of the input port.

The variable pins is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented.

pins = pin7 : pin6 : pin5 : pin4 : pin3 : pin2 : pin1 : pin0

The variable outpins is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented.

outpins = outpin7 : outpin6 : outpin5 : outpin4 :

outpin3 : out pin2 : outpin1 : outpin0

The scratchpad pointer variable is broken down into individual bit variables:

ptr = ptr7 : ptr6 : ptr5 : ptr4 : ptr3 : ptr2 : ptr1 : ptr0

See the ‘Variables - Scratchpad’ section for more information about

@ptr, @ptrinc, @ptrdec

The system ‘flags’ byte is broken down into individual bit variables. If the special

hardware feature of the flag is not used in a program the individual flag may be

freely used as a user defined bit flag.

Name Special Special function
flag0 - reserved for future use

flag1 - reserved for future use

flag2 - reserved for future use

flag3 - reserved for future use

flag4 - reserved for future use

flag5 hserflag hserial background receive has occurred

flag6 hi2cflag hi2c write has occurred (slave mode)

flag7 toflag timer overflow flag

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

51

51

www.picaxe.co.uk

PICAXE-20X2 / 28X2 / 40X2 SFR

pinsA -the portA input pins

dirsA - the portA data direction register

pinsB - the portB input pins

dirsB - the portB data direction register

pinsC - the portC input pins

dirsC - the portC data direction register

pinsD - the portD input pins

dirsD - the portD data direction register

bptr - the byte scratchpad pointer

@bptr - the byte scratchpad value pointed to by ptr

@bptrinc - the byte scratchpad value pointed to by ptr (post increment)

@bptrdec - the byte scratchpad value pointed to by ptr (post decrement)

ptr - the scratchpad pointer (ptrh : ptrl)

@ptr - the scratchpad value pointed to by ptr

@ptrinc - the scratchpad value pointed to by ptr (post increment)

@ptrdec - the scratchpad value pointed to by ptr (post decrement)

flags - system flags

When used on the left of an assignment ‘pins’ applies to the ‘output’ pins e.g.

let pinsB = %11000000

will switch outputs 7,6 high and the others low.

When used on the right of an assignment ‘pins’ applies to the input pins e.g.

let b1 = pinsB

will load b1 with the current state of the input pin on portB.

The variable pinsX is broken down into individual bit variables for reading from

individual inputs with an if...then command. Only valid input pins are

implemented e.g.

pinsB = pinB.7 : pinB.6 : pinB.5 : pinB.4 :

pinB.3 : pinB.2 : pinB.1 : pinB.0

The variable outpinX is broken down into individual bit variables for writing

outputs directly. Only valid output pins are implemented. e.g.

outpinsB = outpinB.7 : outpinB.6 : outpinB.5 : outpinB.4 :

outpinB.3 : outpinB.2 : outpinB.1 : outpinB.0

The variable dirsX is broken down into individual bit variables for setting inputs/

outputs directly e.g.

dirsB = dirB.7 : dirB.6 : dirB.5 : dirB.4 :

dirB.3 : dirB.2 : dirB.1 : dirB.0

The byte scratchpad pointer variable is broken down into individual bit variables:

bptrl = bptr7 : bptr6 : bptr5 : bptr4 : bptr3 : bptr2 : bptr1 : bptr0

See the ‘Variables - General’ section (manual part 2) for more information about

@bptr, @bptrinc, @bptrdec

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

52

52

www.picaxe.co.uk

The scratchpad pointer variable is broken down into individual bit variables:

ptrl = ptr7 : ptr6 : ptr5 : ptr4 : ptr3 : ptr2 : ptr1 : ptr0

ptrh = xxxx : xxxx : xxxx : xxxx : xxxx : xxxx : ptr9 : ptr8

See the ‘Variables - Scratchpad’ section (manual part 2) for more information

about

@ptr, @ptrinc, @ptrdec

The system ‘flags’ byte is broken down into individual bit variables. If the special

hardware feature of the flag is not used in a program the individual flag may be

freely used as a user defined bit flag.

Name Special Special function
flag0 hint0flag hardware interrupt on pin INT0

flag1 hint1flag hardware interrupt on pin INT1

flag2 hint2flag hardware interrupt on pin INT2

flag3 hintflag hardware interrupt on any pin 0,1,2

flag4 compflag hardware interrpt on comparator

flag5 hserflag hserial background receive has occurred

flag6 hi2cflag hi2c write has occurred (slave mode)

flag7 toflag timer overflow flag

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

53

53

www.picaxe.co.uk

Flowchart, Logic or BASIC?

The Programming Editor software supports both textual BASIC programming

and graphical flowchart and graphical logic gate programming.

The Logicator for PIC micros software provides a graphical flowchart method of

programming. It is widely used within schools.

All programming methods use the same BASIC commands and syntax. The

flowchart method simply provides a graphical way of joining the BASIC

commands together, to save typing in programs. Flowcharting uses a smaller sub-

set of the BASIC commands, and is generally used by younger students in the

educational environment.

The logic method is designed for use in schools to teach students the function of

basic logic gates (AND, OR etc). It is a simple introduction and not designed for

complex projects.

One advantage of flowchart programming is the graphical on-screen simulation.

This allows students to ‘see’ their program in operation before downloading to

the PICAXE. However only certain commands are supported by the flowchart

editor.

Most hobbyist and experienced educational users prefer the textual BASIC

method of programming. It is much more powerful than flowcharts, which can

become very complicated for large programs.

All flowcharts are automatically converted into BASIC programs prior to

download to the PICAXE microcontroller. Therefore the main focus of this

manual is on textual BASIC programming.

For further information on the flowchart programming method In Programming

Editor, please see the flowchart appendix at the end of this manual. Logicator has

it’s own, separate, instruction manual.

main:

high 0

wait 1

low 0

wait 1

goto main

start

high 0

low 0

wait 1

wait 1

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

54

54

www.picaxe.co.uk

BASIC Simulation

Simulations are available when using the ‘colour syntax’ mode. This option is

selected from the View>Options>Editor menu.

When a BASIC program has been entered, the simulation is started by clicking the

Simulate >Run menu (or pressing <Ctrl> + <F5>)

The main simulation panel is always displayed during a simulation, but varies in

appearance to match the current PICAXE chip mode (View > Options menu).

However similar functions apply in each case.

Outputs are shown as numbered LED indicators. LED on indicates a logic

level 1 .

Inputs are shown as buttons with LED indicator. To change condition simply

click on the button. LED on indicates a logic level 1.

Analogue input values are shown in a grid and can be altered by the scroll up/

down buttons or by typing over the value directly (0-255). These are the

values used by the ‘readadc’ command.

The ‘generic’ value operates in a similar manner (0-65535) and is used by the

following commands as the input value: count, pulsin, readadc10,

readtemp, readtemp12 etc.

The reset (RST) button resets the simulation (program flow starts again from

top of the program and all variables are reset).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

55

55

www.picaxe.co.uk

Program Flow Control and Breakpoints
Three buttons on the main simulation panel are shortcut buttons for the

Simulation menu functions.

> start / stop the simulation

} single step through the simulation

| | pause the simulation at the current line

Breakpoints can be placed in (removed from) the program by simply clicking

over the line number in the margin. Alternatively the Simulation > Toggle

breakpoint menu may be used to insert/remove a breakpoint at the current cursor

position. Breakpoints are indicated by a red bar in the margin.

To single step a program place a breakpoint on the first line you want to study

and then click Run. From that point on use } to step through the program.

Display of the other available panels (upon simulation start) is determined by the

Simulate > Simulation Panels options.

To change an input value click on the

‘switch’ beside the pin layout. To change

an analogue value use the slider to alter

the analogue value.

The ‘generic’ value is used to enter data

for commands such as count, pulsin etc.

Variables Panel
The variables panel shows the current

byte (b0, b1 etc) or word (w0, w1 etc)

variable values. To change a variable value

double click over the variable whilst the

program is paused. You can then enter a new

value.

Memory Panel
The memory panel displays the current

values of the data EEPROM or SFR or

scratchpad memory areas. For PICAXE chips

that also store the program in the data

EEPROM (08, 08M, 14M, 18, 18M, 20M)

the memory locations currently used by the

program are indicated with a ‘P’.

 Serial Output Panel
The serial output panel displays output from

the serout and sertxd commands. Debug

commands are not simulated because the

variable values are always available in the

‘variables’ panel.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

56

56

www.picaxe.co.uk

Simulation Options

Use View>Options>Simulation menu to select the various simulation options.

Simulation Delay

This slider sets the time delay over each line as the program is simulated.

Highlight Labels

This option highlights and delays over labels that are on a line by themselves.

This slows down the simulation but enables the user to clearly see which label

has been jumped to.

Automatically Hide Panels

This option hides the panels as soon as the simulation ends. If unchecked the

panels will remain on screen until program editing commences.

Beep

This option simulates sounds with a beep instead of a sound. This is only for use

on older computers without a soundcard fitted.

Simulate LCD

Serout commands on the selected output will display a simulated LCD panel.

This simulation matches the standard AXE033 or FRM010 serial LCD commands

(custom characters, AXE033 clock and AXE033 alarm functions are not

simulated).

Simulate EEPROM

Adds a simulated 24LC16B or 24LC256 EEPROM for i2c commands.

Simulate DS1307 RTC

Adds a simulated DS1307 real time clock for i2c commands. Time and date

register reads use the values from the computers internal clock. Writes to change

these time/date registers are ignored under simulation.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

57

57

www.picaxe.co.uk

Interfacing Circuit Summary

This section provides a very brief overview of input/output interfacing to the

PICAXE microcontroller. For more detailed explanations see section 3 of the

manual - Interfacing Circuits. Section 3 provides detailed connection diagrams

and sample programs for most common input / output transducers.

Digital Outputs
The microcontroller can sink or

source 20ma on each output pin,

maximum 90mA per chip. Therefore

low current devices such as LEDs can

be interfaced directly to the output

pin. Higher current devices can be

interfaced via a transistor, FET or

darlington driver array.

Digital Inputs
Digital input switches can be

interfaced with a 10k pull down

resistor. The resistor is essential as it

prevents the input ‘floating’ when the

switch is in th open position. This

would give unreliable operation.

Note the 10k resistor is pre-fitted to

the project board inputs.

Analogue Inputs
Analogue inputs can be connected in a

potential divider arrangement between V+

and 0V. The analogue reference is the

supply voltage, and the analogue signal

must not exceed the supply voltage.

=

������

&�

��

��

����

������	�
�	�

������

����	�
�

 ��

&�

��

������

�*�	�
�

�

��

�����@��

����

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

58

58

www.picaxe.co.uk

Tutorial 1 – Understanding and using the PICAXE System

The PICAXE chip, the ‘brain’ of the PICAXE system, when supplied new without a

control program, does not do anything! The user must write a control program

on the computer, and then download this program into the PICAXE chip.

Therefore the PICAXE system consists of three main components:

The ‘Programming Editor’ software
This software runs on a computer and allows you to use the computer keyboard

to type in programs in a simple BASIC language. Programs can also be generated

by drawing flowcharts. Alternately third party software applications may be used

(e.g. ‘PIC-Logicator’ or ‘Crocodile Technology’ software may be used to simulate

complete PICAXE electronic circuits, programmed via flowcharts).

The Serial / USB Download Cable
This is the cable that connects the computer to the PICAXE system. The cable

only needs to be connected when downloading programs. It does not have to be

connected when the PICAXE is running because the program is permanently

stored on the PICAXE chip – even when the power supply is removed!

The PICAXE chip and board
The PICAXE microcontroller chip ‘runs’ program that have been downloaded to

it. However the chip needs to be mounted on an electronic board that provide

connection to the microcontroller chip.

The electronic board can be designed by the user on a piece of stripboard or

printed circuit board, or a pre-made interface or tutorial board may be used for

speed and convenience.

Summary - Programming Procedure
1. Write the program on the computer using the Programming Editor software.

2. Connect the download cable from the computer to the PICAXE.

3. Connect the power supply to the PICAXE board.

4. Use the Programming Editor software to download the program. The

download cable can then be removed after the download.

The program will start running on the PICAXE automatically. However the

program can also be restarted at any time by pressing the reset switch (if

available) or by cycling the power off and back on.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

59

59

www.picaxe.co.uk

Downloading a BASIC program
The following program switches output 4 on and off every second. When you

download this program the LED should flash on and off every second.

main:

high 4

pause 500

low 4 +

pause 500

goto main

This program uses the high and low commands to control output pin 4, and uses

the pause command to make a delay (1000 ms = 1 second).

The last goto main command makes the program ‘jump’ back to the label main:
at the start of the program. This means the program loops forever. Note that the

first time the label is used it must be followed by the colon (:) symbol. This tells

the computer the word is a new label.

Detailed instructions:
1. Connect the PICAXE cable to the computer

serial / USB port. Note which COM port it is

connected to.

1. Start the Programming Editor software.

2. Select View>Options to select the Options

screen (this may automatically appear).

3. Click on the ‘Mode’ tab and select the

appropriate PICAXE chip.

4. Click on the ‘Serial Port’ tab and select the serial

port that the PICAXE cable is connected to. Click

‘OK’

5. Type in the following program:

main:

high 4

pause 1000

low 4

pause 1000

goto main

(NB note the colon (:) directly after the label ‘main’ and the spaces between

the commands and numbers)

6. Connect an LED (and 330R resistor) to output pin 4. If connecting the LED

directly to a PICAXE chip on a proto (or home-made) board, connect the

LED between the output pin and 0V. When using the project boards (as

supplied within the 14, 18 and 28 starter packs), connect the LED between
V+ and the output connector, as the output is buffered by the darlington

driver chip on the project board. (Make sure the LED is connected the correct

way around!).

7. Make sure the PICAXE circuit is connected to the serial cable, and that the

batteries are connected.

8. Select PICAXE>Run. A download bar should appear as the program

downloads. When the download is complete the program will start running

automatically – the LED should flash on and off every second.

��

����

������	�
�	�

�

����

�������	�����
������	�

�������
��

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

60

60

www.picaxe.co.uk

Simulating a BASIC program

To simulate the program simply click the Simulate>Run menu. Each line of the

BASIC code will be highlighted as it is processed, and an on-screen graphic shows

the status of all input and output pins.

To change the status of an input simply click on the input button which is beside

the corresponding leg of the chip on the graphic.

.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

61

61

www.picaxe.co.uk

Tutorial 2 - Using Symbols, Comments & White-space

Sometimes it can be hard to remember which pins are connected to which

devices. The ‘symbol’ command can then be used at the start of a program to

rename the inputs and outputs.

symbol LED = 4 ‘ rename output4 ‘LED’

symbol buzzer = 2 ‘ rename output2 ‘buzzer’

main: ‘ make a label called ‘main’

high LED ‘ LED on

low buzzer ‘ buzzer off

pause 1000 ‘ wait 1 second (1000 ms)

low LED ‘ LED off

high buzzer ‘ buzzer on

wait 1 ‘ wait 1 second

goto main ‘ jump back to the start

Remember that comments (an explanation after the apostrophe (‘) symbol) can

make each line of a program much easier to understand. These comments are

ignored by the computer when it downloads a program to the PICAXE

A label (e.g. main: in the program above) can be any word (apart from keywords

such as ‘switch’), but must begin with a letter. When the label is first defined it

must end with a colon (:). The colon ‘tells’ the computer that the word is a new

label.

This program uses the wait command. The commands wait and pause both

create time delays. However wait can only be used with whole seconds, pause can

be used for shorter time delays (measured in milliseconds (1000th of a second)).

Wait can be followed by a number between 1 and 65.

Pause can be followed by a number between 1 and 65535.

It is also a good programming technique to use tabs (or spaces) at the start of

lines without labels so that all the commands are neatly aligned. The term ‘white-
space’ is used by programmers to define tabs, spaces and blank lines, and the

correct use of white-space can make the program listing much easier to read and

understand. See the example program on the next page, where code between the

for...next commands is also indented with a tab for clarity.

Note:

Some early BASIC languages used ‘line numbers’ rather than labels for ‘goto’

commands. Unfortunately this line number system can be inconvenient to use,

because if you modify your program by later adding, or removing, lines of code

you then have to modify all the line numbers within the ‘goto’ commands

accordingly. The label system, as used in most modern BASIC languages,

overcomes this problem automatically.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

62

62

www.picaxe.co.uk

Tutorial 3 - For…Next Loops

It is often useful to repeat the same part of a program a number of times, for

instance when flashing a LED. In these cases a for…next loop can be used.

This program flashes the LED connected to output pin 1 on and off 15 times. The

number of times the code has been repeated is stored in the general purpose

RAM memory of the PICAXE chip using variable b1 (the PICAXE contains 14

general purpose byte variables labelled b0 to b13). These variables can also be

renamed using the symbol command to make them easier to remember.

symbol counter = b1 ‘ define the variable b1 as “counter”

symbol LED = 4 ‘ define pin 4 with the name “LED”

main:

for counter = 1 to 15 ‘ start a for...next loop

high LED ‘ switch pin 4 high

pause 500 ‘ wait for 0.5 second

low LED ‘ switch pin 4 low

pause 500 ‘ wait for 0.5 second

next counter ‘ end of for...next loop

end ‘ end program

Note again how white-space (extra spaces) has been used to clearly show all the

commands that are contained between the for and next commands.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

63

63

www.picaxe.co.uk

Tutorial 4 - Making Sounds

Buzzers will make a fixed frequency noise when switched on.

However the PICAXE system can automatically create noises of

different frequencies by use of the sound, play and tune

commands with a piezo sounder. All PICAXE chips support the

sound command, which is designed to make warning ‘beeps’ etc.

This is recommended instead of using buzzers.

To play musical tunes, the sound command is not

recommended. Some PICAXE chips support the play and tune

commands, specifically designed for playing musical tunes.

Refer to the ‘Tune’ command in part 2 of the manual for more

details.

Example sound program:

main:

sound 2,(50,100) ‘ freq 50, length 100

sound 2,(100,100) ‘ freq 100, length 100

sound 2,(120,100) ‘ freq 120, length 100

pause 1000 ‘ wait 1 second

goto main ‘ loop back to start

To test this program you must add a piezo sounder between the output pin (in

this case output 2) and 0V. Note that on the project boards (supplied in the

PICAXE-14, 18 and 28 starter packs) fitted with a Darlington driver the piezo

must be connected directly to the PICAXE output pin (not the buffered output

connection).

The first number provides the pin number (in this case output 2). The next

number (in brackets) is the tone, followed by the duration. The higher the tone

number the higher pitch the sound (note that only valid tones are 0 to 127).

The following program uses a for…next loop to produce 120 different sounds.

main:

for b0 = 1 to 120 ‘ start a for...next loop

 sound 2,(b0,50) ‘ make a sound, freq from b0

next b0 ‘ next loop

end

The number stored in variable b0 increase by 1 in every loop (1-2-3 etc.)

Therefore by using the variable name b0 in the tone position, the note can be

changed on each loop.

The following program does the same task but backwards, by using step value of -

1 (rather than the default of +1 as above).

main:

for b0 = 120 to 1 step -1 ‘ count down in loop

 sound 2,(b0,50) ‘ make a sound. freq from b0

next b0 ‘ next loop

end

�
�

��

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

64

64

www.picaxe.co.uk

Tutorial 5 – Using Digital Inputs

A digital sensor is a simple ‘switch’ type sensor that can only be

‘on’ or ‘off’.

Common examples of a digital sensor are:

• microswitches

• push and rocker switches

• reed switches

This program below shows how to react to switch pushes. In this program output

pin 4 flashes every time the push switch on input pin 3 is pushed. Note that if

using an 18 pin chip you should select a different input pin (e.g. pin0, as pin3

does not exist on this size chip).

main: ‘ make a label called ‘main’

if pin3 = 1 then flash ‘ jump if the input is on

goto main ‘ else loop back around

flash: ‘ make a label called ‘flash’

high 4 ‘ switch output 4 on

pause 2000 ‘ wait 2 seconds

low 4 ‘ switch output 4 off

goto main ‘ jump back to start

In this program the first three lines make up a continuous loop. If the input is off

(=0) the program just loops around time and time again. If the switch is on (=1)

the program jumps to the label called ‘flash’. The program then flashes output 4

on for two seconds before returning to the main loop.

Note carefully the spelling in the if…then line – pin3 is all one word (without a

space). This is because pin3 is the name of a variable that contains the data from

the input pin. Note also that only the label is placed after the command then.

Two switches (or more) can be combined by the AND or OR key words.

A 2-input AND gate is programmed as

if pin2 = 1 and pin3 = 1 then flash

A 3-input OR gate is programmed as

if pin1 = 1 or pin2 = 1 or pin3 = 1 then flash

To read the whole input port use the following command

let b1 = pins

To isolate individual pins (e.g. 6 and 7) within the port, mask the pins variable

with an & (logical AND) statement

let b1 = pins & %11000000

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

65

65

www.picaxe.co.uk

Tutorial 6 – Using Analogue Sensors

An analogue sensor

measures a continuous

signal such as light,

temperature or position. The

analogue sensor provides a

varying voltage signal. This

voltage signal can be

represented by a number in

the range 0 and 255 (e.g.

dark = 0, light = 255).

Common examples of analogue sensors are:

• LDR (Light Dependent Resistor)

• Thermistor

• Variable Resistor (potentiometer)

Using a Light Dependent Resistor (LDR)
The LDR is an example of an analogue sensor. It is

connected to the PICAXE ADC input in a potential divider

arrangement (e.g. input 1). Note that not all inputs have

ADC capabilities - see the pinout diagrams for more

information.

The value of an analogue input can be easily copied into a

variable by use of the ‘readadc’ command. The variable

value (0 to 255) can then be tested. The following program

switches on one LED if the value is greater than 120 and a

different LED if the value is less than 70. If the value is

between 70 and 120 both LEDS are switched off.

main: ‘ make a label called ‚main

readadc 1,b0 ‘ read ADC1 into

variable b0

if b0 > 120 then top ‘ if b0 > 120 then do top

if b0 < 70 then bot ‘ if b0 < 70 then do bot

low 0 ‘ else switch off 0

low 4 ‘ and switch off 4

goto main ‘ jump back to the start

top: ‘ make a label

high 0 ‘ switch on 0

low 4 ‘ switch off 4

goto main ‘ jump back to start

bot: ‘ make a label

high 4 ‘ switch on 4

low 0 ‘ switch off 0

goto main ‘ jump back to start

��

&�

?
)�

�
��
��
@�

����

�
@(�

 ��

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

66

66

www.picaxe.co.uk

Tutorial 7 - Using Debug

When using analogue sensors it is often necessary to calculate the ‘threshold’

value necessary for the program (ie the values 70 and 120 in the tutorial 6

program). The debug command provides an easy way to see the ‘real-time’ value

of a sensor, so that the threshold value can be calculated by experimentation.

main: ‘ make a label called main

readadc 1,b0 ‘ read channel 1 into variable b0

debug b0 ‘ transmit value to computer screen

pause 500 ‘ short delay

goto main ‘ jump back to the start

After this program is run a ‘debug’ window showing the

value of variable b0 will appear on the computer screen.

As the Light falling on the LDR sensor is altered, the

variable value will show the current sensor reading.

The debug window opens automatically after a

download, but can also be opened manually at any time

via the PICAXE>Debug menu.

Tutorial 8 - Using Serial Terminal with Sertxd

All PICAXE variants support the debug command.

However the M and X parts also support more complex serial debug messages by

use of the sertxd command, which sends a user defined serial string to the

computer (at baud rate 4800). This can be displayed by the included Serial

Terminal function (PICAXE>Terminal menu). The Serial Terminal can also be

automatically opened every time a download takes place by the

View>Options>Options menu.

main: ‘ make a label called main

readtemp 1,b0 ‘ read channel 1 into variable b0

sertxd (“The value is “,#b0,cr,lf)

pause 500 ‘ short delay

goto main ‘ jump back to the start

The sertxd command transmits the string “The value is”

followed by the ASCII string of the current

value of the variable b1 (the # prefix to the

variable indicates an ASCII string

representing the correct value is to be

transmitted). The CR and LF constants are

pre-defined values (13 and 10) that cause

the serial terminal to display a newline for

each value so that the display updates

correctly.

This program uses the readtemp

command to read the temperature from a DS18B20 digital temperature sensor

connected to input 1.

*/ 0+��

&�

��

�
��
�
�
�

��)��������
������

��$

�

��

����
�
�

�
����
��

7+C)���	�������	������
���	���52
����	"
�(�	����5
��"�	���
����	��	�(�	
����
�
�4	?(
�)���	��	��)�!��
��	���	�(�	��)�4	������4

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

67

67

www.picaxe.co.uk

Tutorial 9 - Number Systems

A microcontroller operates by performing a large number of commands in a very

short space of time by processing electronic signals. These signals are coded in the

binary system – the signal either being high (1) and low (0)

The counting system used in everyday activities is the decimal system. This

number system uses the ten familiar digits 0 to 9 to explain how big or small the

number is.

However when working with microcontrollers it is sometimes easier to work in

binary. This is especially true when trying to control multiple outputs at the same

time.

A single binary digit is referred to a bit (binary digit). The PICAXE systems use 8

bits (1 byte), with the least significant bit (LSB), bit 0, on the right hand side and

the most significant bit (MSB), bit 7, on the left hand side.

Therefore the binary number %11001000 means set bits 7,6,3 high (1) and the

others low (0). The % sign tells the computer you are working in binary instead

of decimal.

This means that all 8 outputs can be controlled at the same time, instead of

multiple high and low commands. The following program demonstrates how to

make the seven segment display on the AXE050 tutorial board count from 0 to 9.

main:

let pins = %00111111 ‘ digit 0

pause 250 ‘ wait 0.25 second

let pins = %00000110 ‘ digit 1

pause 250 ‘ wait 0.25 second

let pins = %01011011 ‘ digit 2

pause 250 ‘ wait 0.25 second

let pins = %01001111 ‘ digit 3

pause 250 ‘ wait 0.25 second

let pins = %01100110 ‘ digit 4

pause 250 ‘ wait 0.25 second

let pins = %01101101 ‘ digit 5

pause 250 ‘ wait 0.25 second

let pins = %01111101 ‘ digit 6

pause 250 ‘ wait 0.25 second

let pins = %00000111 ‘ digit 7

pause 250 ‘ wait 0.25 second

let pins = %01111111 ‘ digit 8

pause 250 ‘ wait 0.25 second

let pins = %01101111 ‘ digit 9

pause 250 ‘ wait 0.25 second

goto main

Each ‘let pins=’ line changes the number of bars that are lit on the seven segment

display on the tutorial board. This is quicker, and more memory efficient, than

using lots of ‘high’ and ‘low’ commands.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

68

68

www.picaxe.co.uk

Tutorial 10 - Sub-procedures

A sub-procedure is a separate ‘mini-program’ that can be called from the main

program. Once the sub-procedure has been carried out the main program

continues.

Sub-procedures are often used to separate the program into small sections to

make it easier to understand. Sub-procedures that complete common tasks can

also be copied from program to program to save time.

The X part PICAXE microcontrollers support 255 sub-procedures. All other parts

support 15 sub-procedures.

The following program uses two sub-procedures to separate the two main

sections of the program(‘flash’ and ‘noise’).

symbol LED = 4 ‘ rename output4 ‘LED’

symbol buzzer = 2 ‘ rename output2 ‘buzzer’

symbol counter = b1 ‘ define a counter using variable b1

main: ‘ make a label called ‘main’

gosub flash ‘ call the sub-procedure flash

gosub noise ‘ call the sub-procedure noise

goto main ‘ loop back

end ‘ end of the main program

flash: ‘ make a sub-procedure called flash

for counter = 1 to 25 ‘ start a for…next loop

 high LED ‘ LED on

 pause 50 ‘ wait 0.05 second

 low LED ‘ LED off

 pause 50 ‘ wait 0.05 second

next counter ‘ next loop

return ‘ return from the sub-procedure

noise:

high buzzer ‘ buzzer on

pause 2000 ‘ wait 2 seconds

low buzzer ‘ buzzer off

return ‘ return from the sub-procedure

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

69

69

www.picaxe.co.uk

This second program shows how a variable can be used to transfer information

into a sub-procedure. In this case variable b2 is used to tell the microcontroller to

flash 5, and then 15, times.

symbol LED = 4 ‘ rename output4 ‘LED’

symbol counter = b1 ‘ define a counter using variable b1

main: ‘ make a label called ‘main’

let b2 = 5 ‘ preload b2 with 5

gosub flash ‘ call the sub-procedure flash

pause 500 ‘ wait a while

let b2 = 15 ‘ preload b2 with 15

gosub flash ‘ call the sub-procedure flash

pause 500 ‘ wait a while

goto main ‘ loop back

end ‘ end of the main program

flash: ‘ make a sub-procedure called flash

for counter = 1 to b2 ‘ start a for…next loop

 high LED ‘ LED on

 pause 250 ‘ wait 0.25 second

 low LED ‘ LED off

 pause 250 ‘ wait 0.25 second

next counter ‘ next loop

return ‘ return from the sub-procedure

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

70

70

www.picaxe.co.uk

Tutorial 11 - Using Interrupts

An interrupt is a special case of a sub-procedure. The sub-procedure immediately

occurs when a particular input (or combination of inputs) is activated.

A polled interrupt is a quicker way of reacting to a particular input combination.

It is the only type of interrupt available in the PICAXE system. The inputs port is

checked between execution of each command line in the program, between each

note of a tune command, and continuously during any pause command. If the

particular inputs condition is true, a ‘gosub’ to the interrupt sub-procedure is

executed immediately. When the sub-procedure has been carried out, program

execution continues from the main program.

The interrupt inputs condition is any pattern of ‘0’s and ‘1’s on the input port,

masked by the byte ‘mask’. Therefore any bits masked by a ‘0’ in byte mask will be

ignored.

e.g.

to interrupt on input1 high only

setint %00000010,%00000010

to interrupt on input1 low only

setint %00000000,%00000010

to interrupt on input0 high, input1 high and input 2 low

setint %00000011,%00000111

etc.

Only one input pattern is allowed at any time. To disable the interrupt execute a

SETINT command with the value 0 as the mask byte.

Notes:

1) Every program which uses the SETINT command must have a corresponding

interrupt: sub-procedure (terminated with a return command) at the bottom

of the program.

2) When the interrupt occurs, the interrupt is permanently disabled. Therefore to

re-enable the interrupt (if desired) a SETINT command must be used within

the interrupt: sub-procedure itself. The interrupt will not be enabled until the

‘return’ command is executed.

3) If the interrupt is re-enabled and the interrupt condition is not cleared within

the sub-procedure, a second interrupt may occur immediately upon the return

command.

4) After the interrupt code has executed, program execution continues at the

next program line in the main program. In the case of the interrupted pause,

wait, play or tune command, any remaining time delay is ignored and the

program continues with the next program line.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

71

71

www.picaxe.co.uk

More detailed SETINT explanation.

The SETINT must be followed by two numbers - a ‘compare with value’ (input)

and an ‘input mask’ (mask) in that order. It is normal to display these numbers in

binary format, as it makes it more clear which pins are ‘active’. In binary format

input7 is on the left and input0 is on the right.

The second number, the ‘input mask’, defines which pins are to be checked to see

if an interrupt is to be generated ...

- %00000001 will check input pin 0

- %00000010 will check input pin 1

- %01000000 will check input pin 6

- %10000000 will check input pin 7

- etc

These can also be combined to check a number of input pins at the same time...

- %00000011 will check input pins 1 and 0

- %10000100 will check input pins 7 and 2

Having decided which pins you want to use for the interrupt, the first number

(inputs value) states whether you want the interrupt to occur when those

particular inputs are on (1) or off (0).

Once a SETINT is active, the PICAXE monitors the pins you have specified in

‘input mask’ where a ‘1’ is present, ignoring the other pins.

An input mask of %10000100 will check pins 7 and 2 and create a value of

%a0000b00 where bit ‘a’ will be 1 if pin 7 is high and 0 if low, and bit ‘b’ will be

1 if pin 2 is high and 0 if low.

The ‘compare with value’, the first argument of the SETINT command, is what

this created value is compared with, and if the two match, then the interrupt will

occur, if they don’t match then the interrupt won’t occur.

If the ‘input mask’ is %10000100, pins 7 and 2, then the valid ‘compare with

value’ can be one of the following ...

- %00000000 Pin 7 = 0 and pin 2 = 0

- %00000100 Pin 7 = 0 and pin 2 = 1

- %10000000 Pin 7 = 1 and pin 2 = 0

- %10000100 Pin 7 = 1 and pin 2 = 1

So, if you want to generate an interrupt whenever Pin 7 is high and Pin 2 is low,

the ‘input mask’ is %10000100 and the ‘compare with value’ is %10000000,

giving a SETINT command of ...

- SETINT %10000000,%10000100

The interrupt will then occur when, and only when, pin 7 is high and pin 2 is

low. If pin 7 is low or pin 2 is high the interrupt will not happen as two pins are

‘looked at’ in the mask.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

72

72

www.picaxe.co.uk

Example:

setint %10000000,%10000000

‘ activate interrupt when pin7 only goes high

main:

low 1 ‘ switch output 1 off

pause 2000 ‘ wait 2 seconds

goto main ‘ loop back to start

interrupt:

high 1 ‘ switch output 1 on

if pin7 = 1 then interrupt ‘ loop here until the

‘ interrupt cleared

pause 2000 ‘ wait 2 seconds

setint %10000000,%10000000 ‘ re-activate interrupt

return ‘ return from sub

In this example an LED on output 1 will light immediately the input is switched

high. With a standard if pin7 =1 then.... type statement the program could take

up to two seconds to light the LED as the if statement is not processed during the

pause 2000 delay time in the main program loop (standard program shown

below for comparison).

main:

low 1 ‘ switch output 1 off

pause 2000 ‘ wait 2 seconds

if pin7 = 1 then sw_on

goto main ‘ loop back to start

sw_on:

high 1 ‘ switch output 1 on

if pin7 = 1 then sw_on

‘ loop here until the condition is cleared

pause 2000 ‘ wait 2 seconds

goto main ‘ back to main loop

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

73

73

www.picaxe.co.uk

The next step - your own PICAXE project!

You should now have a good idea about how the PICAXE system works and

should be able to start designing your own project.

Make sure you also study sections 2 (BASIC Commands) and 3 (Microcontroller

Interfacing Circuits) of the manual for additional information.

There are a large range of project ideas and examples within the Help files of the

Programming Editor software. Studying these exemplar projects will provide

further ideas, as will looking at the very active forum within the technical support

section of the main PICAXE website (www.picaxe.co.uk)

There is no limit to how creative PICAXE users can be! Have a go at your own

project, you might be surprised how quickly you can start developing exciting

microcontroller based electronic projects!

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

74

74

www.picaxe.co.uk

Appendix A – BASIC Commands Summary

This appendix provides an overview of available commands. Refer to section 2 of

the manual for more specific information and examples for each BASIC

Command

PICAXE-08 / 08M/14M/20M Commands
Output high, low, toggle, pulsout, let pins =

ADC readadc

I/O Config. input, output, reverse, let dirs =

PWM pwm

Sound sound

Input if...then, readadc, pulsin, button

Serial serin, serout

Program Flow goto, gosub, return, branch

Loops for...next

Mathematics let (+, -, *, **, /, //, max, min, &, |, ^, &/, |/, ^/)

Variables if...then, random, lookdown, lookup

Data memory eeprom, write, read

Delays pause, wait, nap, sleep, end

Miscellaneous symbol, debug

PICAXE-08M/14M/18M Additional Commands:
Input count

ADC readadc10

Interrupt setint

PWM pwmout

Music play, tune

RAM peek, poke

Servo Control servo

Infrared infrain2, infraout

Temperature readtemp, readtemp12

1-wire Serial No readowsn

Clock Frequency setfreq

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

75

75

www.picaxe.co.uk

PICAXE-18 / 18A / 18M / 18X Commands
Output high, low, toggle, pulsout, let pins =

Input if...then, readadc, pulsin, button

ADC readadc

RAM peek, poke

Sound sound

Serial serin, serout

Program Flow goto, gosub, return, branch

Loops for...next

Mathematics let (+, -, *, **, /, //, max, min, &, |, ^, &/, |/, ^/)

Variables if...then, random, lookdown, lookup

Data memory eeprom, write, read

Delays pause, wait, nap, sleep, end

Miscellaneous symbol, debug

PICAXE-18A / 18M / 18X Additional Commands:
Interrupt setint

Servo Control servo

Infrared infrain

Temperature readtemp

1-wire Serial No readowsn

1-wire Clock readowclk, resetowclk (18A only)

Keyboard keyin, keyled

Clock Frequency setfreq

PICAXE-18M Additional Commands:
Input count

ADC readadc10

Music play / tune

Temperature readtemp12

PWM pwmout

Infrared infrain2 / infraout

PICAXE-18X Additional Commands:
Input count

ADC readadc10

I2C readi2c, writei2c, i2cslave

Temperature readtemp12

PWM pwmout

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

76

76

www.picaxe.co.uk

PICAXE-28A / 28X / 28X1 / 28X2 Commands
Output high, low, toggle, pulsout, let pins =

Input if...then, pulsin, button

ADC readadc

RAM peek, poke

Sound sound

Serial serin, serout

Program Flow goto, gosub, return, branch

Loops for...next

Mathematics let (+, -, *, **, /, //, max, min, &, |, ^, &/, |/, ^/)

Variables if...then, random, lookdown, lookup

Data memory eeprom, write, read

Delays pause, wait, nap, sleep, end

Miscellaneous symbol, debug

Interrupt setint

Servo Control servo

Infrared infrain

Temperature readtemp

1-wire Serial No readowsn

Keyboard keyin, keyled

PICAXE-28X Additional Commands:
Input count, if portA….then

ADC readadc10

Portc config. let dirsc =

Portc output high portC, low portC, let pinsc =

I2C readi2c, writei2c, i2cslave

Temperature readtemp12

PWM pwmout

PICAXE-28X1 Additional Commands:
Scratchpad put, get, @ptr, @ptrinc, @ptrdec

ADC calibadc, calibadc10

Serial hsersetup, hserout, hserin, serrxd

SPI spiin, spiout, hspisetup, hspiin, hpsiout

I2C hi2csetup, hi2cin, hi2cout

One-wire owin, owout

PWM hpwm

Timer settimer

Power control hibernate, enablebod, disablebod

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

77

77

www.picaxe.co.uk

PICAXE-40X/40X1/40X2 Commands
Output high, low, toggle, pulsout, let pins = ,

Input if...then, if portA…then, if portC then…, pulsin, button,

Counting count

ADC readadc, readadc10

Portc config. let dirsc =

Portc output high portc, low portc, let pinsc =

PWM pwmout

RAM peek, poke

Sound sound

Serial serin, serout

Program Flow goto, gosub, return, branch

Loops for...next

Mathematics let (+, -, *, **, /, //, max, min, &, |, ^, &/, |/, ^/)

Variables if...then, random, lookdown, lookup

Data memory eeprom, write, read

Delays pause, wait, nap, sleep, end

Miscellaneous symbol, debug

Interrupt setint

Servo Control servo

Infrared infrain

Temperature readtemp, readtemp12

1-wire Serial No readowsn

Keyboard keyin, keyled

PICAXE-40X1 Additional Commands:
Scratchpad put, get, @ptr, @ptrinc, @ptrdec

ADC calibadc, calibadc10

Serial hsersetup, hserout, hserin, serrxd

SPI spiin, spiout, hspisetup, hspiin, hpsiout

I2C hi2csetup, hi2cin, hi2cout

One-wire owin, owout

PWM hpwm

Timer settimer

Power control hibernate, enablebod, disablebod

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

78

78

www.picaxe.co.uk

Appendix B – Over-clocking at higher frequencies

All main PICAXE functions are based upon a 4MHz resonator frequency (8MHz

on X2 parts). However the user may choose to ‘overclock’ some of the PICAXE

parts to achieve faster operation

With the -08, -18 the internal resonator is fixed at 4MHz and cannot be altered.

With the -08M, -14M, -18A, -18M, -18X the internal resonator has a default value

of 4MHz. However it can be increased by the user to 8MHz via use of the ‘setfreq

m8’ command.

With the -28 and -28A an external 4MHz resonator must be used.

With the -28X / -40X an external 4MHz 3 pin ceramic resonator is normally

used, but it is also possible to use a faster resonator (8 or 16Mhz), although this

will affect the operation of some of the commands.

With the -28X1 / -40X1 the internal resonator has a default value of 4MHz.

However it can be increased by the user to 8MHz via use of the ‘setfreq m8’

command or to an external 16/20MHz 3 pin ceramic resonator via use of the

‘setfreq em16 (em20)’ command.

The Programming Editor software supports resonator frequencies of 4, 8, 16MHz

only. No other frequencies are recommended. If any other frequency is used it

may not be possible to download a new program into the PICAXE

microcontroller.

To change the frequency:

PICAXE-08M, 14M, 20M, 18A, 18M, 18X, 20X2
Download a program containing the command setfreq m4 (for 4 MHz) or

setfreq m8 (for 8Mhz). If no setfreq command is used in a program the

frequency will default to 4MHz (8MHz on X2 parts). Note the new frequency

occurs immediately after the command is run. When downloading new

programs, you must ensure the correct frequency (View>Options>Mode) is used

to match the last program running in the PICAXE chip. If in doubt perform a

‘hard-reset’ at 4Hz.

PICAXE-28X and PICAXE-40X
Solder the appropriate external 3 pin ceramic resonator into the project board.

PICAXE-28X1/28X2 and PICAXE-40X1/40X2
Solder the appropriate external 3 pin ceramic resonator into the project board.

Use the setfreq command to switch between internal 4 or 8 or external frequency.

Downloading programs at 4, 8, 16MHz
After changing frequency you must select the correct frequency via the

View>Options>Mode software menu. If the wrong frequency is selected the

program will not download. This is not required on X1 and X2 parts as they

default back to the internal resonator for the download.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

79

79

www.picaxe.co.uk

Commands affected by resonator frequency.
Many of the commands are affected by a change in resonator frequency. A

summary of the commands affected are given below (see section 2 of the manual

- BASIC Commands for detailed command syntax and information).

When using devices with an internal resonator, remember that it is sometimes

possible to change back to 4MHz to run the command dependent on this speed

e.g.

setfreq m4

readtemp 1,b1

setfreq m8

This is not possible with devices with an external resonator. This process is

automatic on X1 and X2 parts.

Commands for which operation is affected by change in resonator speed:

• count

• debug

• readi2c, writei2c, i2cin, i2cout

• pause, wait

• pulsin, pulsout

• pwm. pwmout

• serin, serout, sertxd, serrxd, hsersetup, hserin, hserout

• sound

Note that nap, doze and sleep are not affected by resonator speed as they use

their own, separate, internal timer.

The following commands will not work at 8 or 16MHz due to timing issues with

the external device listed. Note that X1 and X2 parts automatically switch to

internal 4MHz operation to process these commands, so the external frequency

can be higher.

• infrain, infrain2, infraout (infrared receiver)

• keyin (keyboard)

• keyled (keyboard)

• readtemp / readtemp12 (DS18B20 temperature sensor)

• readowsn (1-wire device)

• servo (servo)

• play, tune (music)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

80

80

www.picaxe.co.uk

�
/��
��	��

�*��	'	�����	�
��2��
�	'	�����	�

�.=	�	'	(�")	�	'	#��	�&	'	��	�&	'	�����	�
(�")	+	'	#��	��	'	��	��	'	�����	

�*��	'	(�")	�	'	#��	��	'	��	��	'	�����	�

��
#�����	�	'	/��
��	#��	'	��2�����
#�����	
#�����	�
#�����	�	'	#��	��	'	��	��	'	�*�
#�����	�	'	#��	� 	'	��	� 	'	�*��
#�����	&	'	#��	��	'	��	��	'	�*��	'	(�")	*

�

�

�

&

%

$

 �

 �

 �

 �

1

0

�������
������������� ��

Appendix C – Configuring the PICAXE-14M Input-Output Pins

The PICAXE-14M is a very versatile device. In it’s default state, which is designed

primarily for educational use, it has a simple, clean ‘inputs on left’ - ‘outputs on

right’ layout.

However more advanced users can re-configure the bottom 3 pins on each side to

be either inputs or outputs. This has added advantages as follows:

- more flexible quantity of inputs and outputs

- more ADC channels become available

- the option to use pwmout via the pwmout and hpwm commands

The diagram above shows the advanced function of each pin. The 6 pins are

arranged in a ‘port’ (portC) with bits labelled C0-C5. Note that the portC bit

numbers do not correspond to the normal input/output numbers (or even the leg

numbers!). Study the pinout diagram very carefully!

Using portc pins as outputs
Any portc pin can be configured to be used as a digital output.

To convert the pin C3 to output and make it high

high portc 3

To convert the pin C3 to output and make it low

low portc 3

To convert all the pins to outputs

let dirsc = %00111111

To convert all the pins to inputs

let dirsc = %00000000

It is not possible to access the portc pins C3-C5 with any other ‘output’ type

commands (serout, pulsout etc). Therefore when used as outputs these pins

should be reserved as simple on/off outputs. Remember that C0-C2 are normal

outputs (3-5) anyway, and so can be used with any output command.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

81

81

www.picaxe.co.uk

Using portc as digital inputs
The portc pins C0, C1, C2 are, by default, configured as outputs. They can

however be reconfigured as inputs, but you must ensure your hardware design

allows for the fact that the pin will be an output upon powerup. A simple 1k

resistor in series with the pin will normally resolve this issue.

To make the pin an input you must use ‘let dirsc = ‘ as described above.

The following syntax is used to test the input condition:

if portC pin0 = 1 then jump

i.e. the additional keyword ‘portC’ is inserted after the ‘if’ command.

to test if two (or more) portc inputs are on

if portC pin0 = 1 AND pin1 = 1 then jump

to test if either of two (or more) portc inputs are on

if portC pin0 = 1 OR pin1 = 1 then jump

Note the portc command is only required once after the ‘if’ command.

It is not possible to test inputs on two different ports within the same if…then

statement.

It is not possible to access the portc pins with any other ‘input’ type commands

(count, pulsin etc). Therefore these pins should be reserved as simple on/off

switches.

Note that ‘dirsc’ uses the common BASIC notation 0 for input and 1 for output.

Using portc as analogue inputs
Three additional ADC pins, ADC1,2,3, are available AFTER the corresponding pin

has been converted to an input. You must ensure your hardware design allows for

the fact that the pin will be an output upon powerup. A simple 1k resistor in

series with the pin will normally resolve this issue.

Using portc as pwm outputs
C5 can be used with the pwmout command, but will make this pin an output.

Pins C2-5 (hpwm A-D) can all be used with the hpwm command, but will also

make the corresponding pins outputs.

Special Note - Output Pin 0
Pin 0 (leg 13) is used during the program download, but can also be used as a

normal output once the download is complete. Therefore you must remember

that your output device will rapidly switch on and off as the download takes

place (not a problem with simple outputs like LEDs, but could cause problems

with other devices such as motors).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

82

82

www.picaxe.co.uk

Appendix D – Configuring PICAXE-08 / 08M Input-Output Pins

The PICAXE-08 microcontroller has 5 input/output pins. Unlike the larger

PICAXE microcontroller (where the pins are pre-defined) the user can select

whether some of the pins are used as input or as outputs.

Pin 0 must always be an output, and pin 3 must always be an input (this is due to

the internal construction of the microcontroller). The other 3 pins can be selected

to be inputs or outputs, and so the user can select any input/output combination

between the limits of 1 input-4 outputs and 4 inputs-1 output.

In addition pin 1 also contains a low-resolution analogue to digital converter and

so can be used as an analogue input pin if required.

Important - Don’t Get Confused!
The input/output pin numbers are NOT the same as the external ‘leg’ numbers, as

the input/output pin numbering follows the microcontrollers manufacturers port

allocation. To avoid confusion this manual always talks about ‘legs’ where

referring to the external physical location of the input/output pin.

Leg Description Notes
1 Positive Supply, V Use a 3V to 5V battery pack/supply

2 Serial In Used for the program download

3 Pin 4 Input or output

4 Pin 3 Input only

5 Pin 2 Input or output

6 Pin 1 Input or output

7 Pin 0 / Serial Out Output only. Also used for download

8 Ground, G Connect to the power supply (0V)

Special Note - Output Pin 0
Pin 0 (leg 7) is used during the program download, but can also be used as a

normal output once the download is complete. On the project boards a jumper

link allows the microcontroller leg to either be connected to the download socket

(PROG position) or to the output (OUT position). Remember to move the

jumper into the correct position when testing your program!

If you are making your own pcb you can include a similar jumper link or small

switch, or you may prefer to connect the microcontroller leg to both the output

device and the program socket at the same time. In this case you must remember

that your output device will rapidly switch on and off as the download takes

place (not a problem with simple outputs like LEDs, but could cause problems

with other devices such as motors).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

83

83

www.picaxe.co.uk

 Selecting Inputs or Outputs.
When the PICAXE-08 first powers up, all pins are configured as input pins (except

pin0, which is always an output). There are three methods of setting the other

pins to be outputs (if required)

Method 1 – use a command that requires the pin to be an output.
This is the simplest method, used by most educational users. As soon as a

command that involves an output pin (such as high, low, toggle, serout or sound)

is used, the PICAXE-08 microcontroller automatically converts the pin to an

output (and leaves the pin as an output).

Therefore the simplest way to setup outputs is just to put a ‘low’ command at the

start of the program for each output pin. This tells the microcontroller to make

the pin an output, and to make sure the output is condition low (off).

Method 2 – use the input and output command.
The command ‘output ?’ (where ? is the pin number) can also be used to tell the

pin to be an output at the start of a program. Likewise the ‘input ?’ command

can be used to set the pin as an input, although this is not normally necessary as

most of the pins are set as inputs by default. Note that the output command does

not set the pin into a known high or low state, so it is often preferable to use the

‘low’ command instead.

The input and output commands have no effect on pin 0 (output) and pin 3

(input), which cannot be altered.

Method 3 – (advanced) use the let dirs = command
The ‘let dirs = %000100111’ command can be used to simultaneously set all the

pins at the same time. This is quicker than using multiple input/output

commands but requires an understanding of binary bits (explained in tutorial 9).

Placing a 0 for the pin number bit will make the corresponding pin an input, a 1

will make the pin an output. The value of bits 0,3,5,6,7 can be either 0s or 1s as

they have no effect on the microcontroller and are simply ignored.

Selecting pins to be an analogue input.
Use of the readadc command will automatically configure the pin to be an

analogue input. Therefore use the command ‘readadc 1,b2’ whenever you wish to

take an analogue reading (presuming use of variable b2 to store the analogue

reading).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

84

84

www.picaxe.co.uk

+4$
+4%
+4&
+4�	'	�*� 	'	8(�")	*9
+4�	'	�*�1
+4�	'	�*�0	'	�7?�	'	8(�")	+9
+4 	'	�*� �	'	�7? 	'	8(�")	�9
+4�	'	�*� �	'	�7?�
�
��
�4$	'	(���
�	'	��	����
�4%	'	(������	'	��	���
�4&	'	��
	���
�4�	'	
��	���	'	��
	��

�����
� 5	'	�*��	'	�4�
��5	'	�*� 	'	�4
��	'	�*��	'	�4�
� 	'	�*��	'	�4�

/��
��	��
/��
��	#��	'	�4�

��
���������
���������

�
)��	���	'	�4�
�")	 	'	�4

8(�")	�9	'	�")	�	'	�4�

��	���	'	��
	���	'	�4�

��������	��

�

�

�

&

%

$

0

1

 �

 �

 �

 �

�0

�$

�%

�&

��

��

��

�

��

 1

 0

 $

 %

 &

Appendix E – Configuring PICAXE-28X / 28X1 Input-Output Pins

To provide greater flexibility, the input /

output pin configuration of the PICAXE-28X

can be varied by the user.

The default power up settings are the same as

the other PICAXE-28 parts (8 in, 8 out, 4

analogue).

PORTA (legs 2 to 5) provide 4 analogue

inputs (default) or up to 4 digital inputs.

PORTB (leg 21 to 28) provide 8 fixed

outputs.

PORTC (leg 11 to 18) provide 8 digital

inputs (default) or up to 8 outputs.

This gives a maximum of 12 digital inputs, 16 outputs and 4 analogue inputs

PORTA Functions
Leg Default Function Second Function
2 analogue 0 porta input 0

3 analogue 1 porta input 1

4 analogue 2 porta input 2

5 analogue porta input 3

PORTB Functions
PORTB pins are fixed as outputs and cannot be altered.

PORTC Functions
Leg Default Second Function Special Function
11 input 0 output portc 0infrared (input)

12 input 1 output portc 1pwm 1 (output)

13 input 2 output portc 2pwm 2 (output)

14 input 3 output portc 3i2c scl clock (input)

15 input 4 output portc 4i2c sda data (input)

16 input 5 output portc 5

17 input 6 output portc 6keyboard clock (input)

18 input 7 output portc 7keyboard data (input)

The portC pins can be used as the default inputs, changed to outputs, or used

with their special function via use of the infrain, keyin, i2cslave, or pwmout

command as appropriate.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

85

85

www.picaxe.co.uk

Using porta as digital inputs
The porta pins 0 to 3 (legs 2 to 5) are, by default, configured as analogue inputs.

However they can also be used as simple digital inputs.

The following syntax is used to test the input condition:

if portA pin0 = 1 then jump

i.e. the additional keyword ‘portA’ is inserted after the ‘if’ command.

to test if two (or more) porta inputs are on

if portA pin0 = 1 AND pin1 = 1 then jump

to test if either of two (or more) porta inputs are on

if portA pin0 = 1 OR pin1 = 1 then jump

Note the portA command is only required once after the ‘if’ command.

It is not possible to test inputs on two different ports within the same if…then

statement.

It is not possible to access the portA pins with any other ‘input’ type commands

(count, pulsin etc). Therefore these pins should be reserved as simple on/off

switches.

Using portc as outputs
The portc pins are, by default, digital input pins.

However they can also be configured to be used as digital outputs.

To convert the pin to output and make it high

high portc 1

To convert the pin to output and make it low

low portc 1

To convert all the pins to outputs

let dirsc = %11111111

To convert all the pins to inputs

let dirsc = %00000000

Note that ‘dirsc’ uses the common BASIC notation 0 for input and 1 for output.

(Advanced - If you are more familiar with assembler code programming you may

prefer to use the command ‘let trisc =’ instead, as this uses the inverted assembler

notation - 1 for input and 0 for output. Do not attempt to directly

poke the trisc register (poke command) as the PICAXE bootstrap refreshes the

register setting regularly).

To switch all the outputs on portc high

let pinsc = %11111111

(or) let portc = %11111111

To switch all the outputs on portc low

let pinsc = %00000000

(or) let portc = %00000000

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

86

86

www.picaxe.co.uk

#�����	$
#�����	%
#�����	&
#�����	�
#�����	�
#�����	�
#�����	
#�����	�
�
��
�����	$	'	��3�����	����
�����	%	'	��3�����	�����
�����	&
�����	�
��	�$	'	#��	�$
��	�%	'	#��	�%
��	�&	'	#��	�&
��	��	'	#��	��	'	
��	���
�����	�
�����	�

�����
�*�	�	'	��	��
�*�	 	'	��	�
�*�	�	'	��	��
�*�	�	'	��	��

/��
��	��
/��
��	#��

�*�	&
�*�	%
�*�	$

�
��

���������
���������

��	��	'	#��	��
��	� 	'	#��		� 	'	�")	
��	��	'	#��	��	'	�")	�
��	��	'	#��		��	'	
��	���

�����	�	'	��2��
�
�����	

����������

�

�

�

&

%

$

0

1

 �

 �

 �

 �

 &

 %

 $

 0

 1

��

��

�1

�0

�$

�%

�&

��

��

��

�

��

�1

�0

�$

�%

�&

��

��

��

�

Appendix F – Configuring PICAXE-40X / 40X1 Input-Output Pins

To provide greater flexibility, the input/output pin

configuration of the PICAXE-40X can be varied by

the user.

PORTA (legs 2 to 5) provide 4 analogue inputs

(default) or up to 4 digital inputs.

PORTB (leg 33 to 40) provide 8 fixed outputs.

PORTC (leg 15-18. 23-26) provide 8 digital

inputs (default) or up to 8 outputs.

PORTD (leg 19-22, 27-30) provide 8 digital

inputs

PORTE (leg 8 to 10) provide 3 analogue inputs

This gives a maximum of 20 digital inputs,

16 outputs, 7 analogue inputs

PORTA Functions
Leg Default Function Second Function
2 analogue 0 porta input 0

3 analogue 1 porta input 1

4 analogue 2 porta input 2

5 analogue porta input 3

PORTB / PORTE Functions
PORTB pins are fixed as outputs and cannot be altered.

PORTE pins are fixed as analogue inputs and cannot be altered.

PORTC Functions
Leg Default Second Function Special Function
15 input portc 0 output portc 0

16 input portc 1 output portc 1pwm 1 (output)

17 input portc 2 output portc 2pwm 2 (output)

18 input portc 3 output portc 3i2c scl clock (input)

23 input portc 4 output portc 4i2c sda data (input)

24 input portc 5 output portc 5

25 input portc 6 output portc 6

26 input portc 7 output portc 7

The portC pins can be used as the default inputs, changed to outputs, or used

with their special function via use of the i2cslave or pwmout command

PORTD Functions
Leg Default Function Special Function
19 input 0 infrared (input)

20 input 1

21 input 2

22 input 3

27 input 4

28 input 5

29 input 6 keyboard clock (input)

30 input 7 keyboard data (input)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

87

87

www.picaxe.co.uk

Using porta as digital inputs
The porta pins 0 to 3 (legs 2 to 5) are, by default, configured as analogue inputs.

However they can also be used as simple digital inputs.

The following syntax is used to test the input condition:

if porta pin0 = 1 then jump

i.e. the additional keyword ‘portA’ is inserted after the ‘if’ command.

to test if two (or more) porta inputs are on

if porta pin0 = 1 AND pin1 = 1 then jump

to test if either of two (or more) porta inputs are on

if porta pin0 = 1 OR pin1 = 1 then jump

Note the portA command is only required once after the ‘if’ command.

It is not possible to test inputs on two different ports within the same if…then

statement.

It is not possible to access the portA pins with any other ‘input’ type commands

(count, pulsin etc). Therefore these pins should be reserved as simple on/off

switches.

Using portc as digital inputs
On the PICAXE-40X portD are the standard inputs, and hence use the standard

if pin0 = command. Therefore for portC inputs the extra keyword portC must

be used (as in the if portA pin0 = example above).

Using portc as outputs
The portc pins are, by default, digital input pins.

However they can also be configured to be used as digital outputs.

To convert the pin to output and make it high

high portc 1

To convert the pin to output and make it low

low portc 1

To convert all the pins to outputs

let dirsc = %11111111

To convert all the pins to inputs

let dirsc = %00000000

Note that ‘dirsc’ uses the common BASIC notation 0 for input and 1 for output.

(Advanced - If you are more familiar with assembler code programming you may

prefer to use the command ‘let trisc =’ instead, as this uses the inverted assembler

notation - 1 for input and 0 for output. Do not attempt to directly

poke the trisc register (poke command) as the PICAXE bootstrap refreshes the

register setting regularly).

To switch all the outputs on portc high

let pinsc = %11111111

(or) let portc = %11111111

To switch all the outputs on portc low

let pinsc = %00000000

(or) let portc = %00000000

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

88

88

www.picaxe.co.uk

Appendix G - Using Flowcharts

Flowchart Screen
The Flowchart Editor allows flowcharts to be drawn and simulated on-screen. The

flowchart can then be automatically converted into a BASIC program for

downloading into the microcontroller. Click File>New Flowchart to start a

new flowchart.

Flowchart Tools

Select Tool
Use this to select and move shapes. When a single shape is selected it’s BASIC

code can be edited in the edit bar at the bottom of the window.

Select Area
Use to select a particular area.

Zoom
Use to zoom in to an area of the graph. Right click to zoom out.

Zoom In/Out
To zoom in click and move the mouse up. To zoom out click and move the

mouse down.

Pan
Use this tool to move around the flowchart.

Line Tool
Use this tool to draw lines between shapes. Corners can be added by clicking

once. When the line is near to a shape it will ‘snap’ to the shape.

Connection Points
Use instead of a long complicated line. This gives two ‘connection points’ that

can be placed at different points within the flowchart.

Label Tool
Use this tool to add descriptive labels or titles to the flowchart.

Out / If / Delay / Sub / Other
Click on these buttons to move to the command sub-menu to select commands.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

89

89

www.picaxe.co.uk

Drawing Flowcharts
To draw a flowchart click on one of the command menu buttons (out / if / delay /

sub / other) on the toolbar to move to the appropriate command sub-menu.

Select the appropriate command and then click on the screen where the shape is

required. Do not try to locate the shape precisely at first – just drop it in the

general area and then use the select tool to move the shape to the correct

position.

After dropping a shape the cursor will remain in that shape mode until either:

1) the select tool is selected

2) the right hand mouse button is clicked to move back to select mode

Once the shape is in position click on it so that it is highlighted. The BASIC code

for the shape will then appear in the edit bar at the bottom of the screen. Edit the

code as required.

For further information about each command see section 2 of the manual -

‘BASIC Commands’. Any BASIC Command not supported by the simulation can

be added via the ‘generic’ shape, indicated by three dots.

Joining Shapes
Shapes are joined by moving them close together until they ‘snap’ together.

Alternately lines can be drawn between the shapes using the ‘line tool’ from the

main toolbar. Note that it is only possible to join the bottom (side) of shapes to

the top of other shapes (you cannot connect lines to lines). Only one line is

allowed out of the bottom of each shape.

To enable neat diagrams, corners to the lines can be added by clicking with the

mouse. When a line moves close to a connection point it will snap into position

and then a click will finish the line.

Lines cannot be moved. If you try to move a line it will be deleted and a new line

must be created.

start

high 0

low 0

wait 1

wait 1

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

90

90

www.picaxe.co.uk

On Screen Simulation
To simulate the flowchart, click ‘Simulate’ from the Flowchart menu. The

program will then start to run on-screen.

As the program runs each cell is highlighted red as it is carried out. The ‘Inputs/

Outputs’ and ‘Variables’ windows also appear when a simulation is being carried

out. To adjust the input values click the on-screen switch (shown beneath the

output LED) or slide the analogue input slider.

The time delay between shapes can be adjusted via the Flowchart options

(View>Options>Flowchart menu).

Note that certain commands have no on-screen simulation equivalent feature. In

this case the command is simply ignored as the flowchart runs.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

91

91

www.picaxe.co.uk

Downloading Flowcharts
Flowcharts can be directly downloaded to the microcontroller. Alternately the

flowchart can be converted into a BASIC program, which is then downloaded.

To convert a program select ‘Convert’ from the Flowchart menu. The BASIC

program for downloading will then be created.

Shapes that are not connected to the ‘start’ or ‘sub’ shapes in the flowchart are

ignored when the conversion takes place. The conversion will stop if an

unconnected shape is found. Therefore always use a ‘stop’ shape or line to

complete the flowchart before simulation or conversion.

Note that it is possible to quickly convert and then download a flowchart by

pressing the shortcut key <F5> twice.

Zooming
To zoom in and out you can use the two toolbar zoom features, or the rapid

zoom button at the bottom right hand corner of the screen. Left click this button

to zoom-in and right click to zoom-out.

Using Symbols
Inputs, Outputs and Variables can all be renamed using the ‘Symbol Table’ from

the Flowchart menu. When a symbol is renamed the new name appears in the

drop-down menus on the edit bar. Note that you should not use commands (e.g.

switch or sound) as a symbol as this will generate errors in your converted BASIC

program.

Saving and Printing Flowcharts
Flowcharts can be saved, printed and exported as graphic files (for adding to word

processor documents) via the File menu. Flowcharts can also be copied to the

Windows clipboard (for pasting into other applications) via the Edit menu.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

92

92

www.picaxe.co.uk

Appendix H - Frequently Asked Questions (FAQ).

Where can I purchase PICAXE microcontrollers?
All microcontrollers can be purchased from within the PICAXE section of the

online store at www.tech-supplies.co.uk or from our distributors (see

www.picaxe.co.uk)

Which cable - serial or USB?
Many modern computers do not have a 9 pin legacy serial port and so we always

recommend the USB download cable part AXE027. However the AXE026 serial

cable is a more economical option for multiple computers that still have serial

ports - e.g. in a school IT room.

There appears to be two PICAXE serial download cables - which should I use?
The standard serial PICAXE cable (part AXE026) ends with a stereo style 3.5mm

plug. If making your own board we recommend this stereo cable cheaper as it is

cheaper, better quality, and our sample PCB files use this connector (part

CON039). The original PICAXE-28 cable (part AXE025) ended with a 3 pin in-

line connector, but this cable is no longer used on any of our project boards or

sample pcbs.

I've built a second pcb (without the download circuit) and the PICAXE program will not
run!

If you program a PICAXE chip in a different board, and then move the chip to a

board without the download circuit, you must ensure that the 'serial in' pin is

tied to ground (0V) on the second board for reliable operation.

I’ve bought some blank PICs and they don’t work in the PICAXE system!
The PICAXE microcontroller is not a blank PICmicro! It is a microcontroller that

has been pre-programmed with a ‘bootstrap’ program that enables the download

via the direct cable link (the bootstrap program tells the microcontroller how to

interpret the direct cable programming commands). Therefore you must buy

‘PICAXE’ microcontrollers, rather than blank microcontrollers, to use with the

PICAXE system. However we sell PICAXE microcontrollers at approx. the same

price as blank devices, so there is very little price difference for the end user,

particularly if you purchase the multi-packs.

I’ve programmed a PICAXE microcontroller using a conventional programmer and it will
now not work in the PICAXE system!

You have overwritten, and hence deleted, the PICAXE bootstrap program (see

above). The microcontroller can no longer be used as a PICAXE microcontroller,

but you can naturally continue using it with your conventional programmer.

Can you reprogram microcontrollers (that I have accidentally erased) with the bootstrap
program?

No. We do not accept microcontrollers from unknown sources due to the correct

storage/handling procedures required by these devices. We use gang programmers

costing several thousand pounds to program the bootstrap code into the blank

microcontrollers, and so must protect this expensive equipment from damage. It

is also likely that if we did offer this service the handling cost would end up more

expensive than new PICAXE microcontrollers anyway!

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

93

93

www.picaxe.co.uk

Can you supply the bootstrap program so that I can make my own PICAXE?
No. The small royalty made on each PICAXE chip sold is the only financial

benefit to our company to support the PICAXE system - the software is free and

the cables/development kits are sold at very low cost. Therefore we do not allow

anyone else to manufacture PICAXE microcontrollers.

Can I see the assembler code that is downloaded into the PICAXE?
If you own a Revolution Serial PIC Programmer, you can convert PICAXE BASIC

programs into assembler code, to program blank PICs or to just learn how

assembler code works by 'disassembly'. However some of the more complex

commands (e.g. serin) are not supported, and the assembler code program

generated is optimised for sequential learning (not optimised for compactness as

with the PICAXE system) and so the code is not 100% identical to that

downloaded to the PICAXE.

Can you alter the input/output pin arrangement of the PICAXE microcontroller?
The PICAXE-08/08M and X2 parts have configurable pins. The other parts have

mainly fixed i/o, although some pins can be changed - see the appendices at the

end of Manual part 1 for more details.

How long a program can I download into the PICAXE microcontroller?
This varies on the commands used, as not all commands use the same amount of

memory. As a general rule you can download about

40-110 lines of code into the PICAXE-08/18

80-220 lines of code into the PICAXE-08M/14M/20M/18A/18M/28/28A

600-1800 lines of code into the PICAXE-18X/28X/40X

2000-3200 lines of code into the PICAXE-20X2/28X1/28X2/40X1/40X2

However some commands, such as sound and serout use more memory and so

will reduce this count. In our experience most educational programs that are too

long to download are generally badly composed, and can be greatly reduced in

size by use of sub-procedures etc.

Do I need to erase the device?
How do I stop a program in the PICAXE microcontroller running?

Each download automatically overwrites the whole of the previous program.

There is generally no need to erase the memory at any point. However if you want

to stop a program running you can select the ‘Clear Hardware Memory’ menu to

download an ‘empty’ program into the PICAXE memory.

How often can the PICAXE microcontroller be reprogrammed?
PICAXE chips can be reprogrammed at least 100,000 times. Note these are

minimum values and the actual values may be much greater.

How vulnerable to damage are the microcontrollers?
The microcontrollers have a high level of static protection built into each pin and

so handling them without any personal static protection in an educational

environment is perfectly acceptable.

Can I control servos using the PICAXE?
Yes, many parts have a ‘servo’ command that allows control of up to 8 servos (one

on each output).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

94

94

www.picaxe.co.uk

Can I control an LCD display?
Yes, the PICAXE supports serial LCD modules (like the Serial LCD/Clock Module

AXE033) via the serout command. Note that the AXE033 module can also be pre-

programmed with up to 8 messages to reduce the memory usage of the PICAXE

microcontroller.

How fast does the PICAXE operate?
The PICAXE-08/18 microcontrollers have an internal 4MHz resonator, and the

PICAXE-28/40 uses an external 4MHz ceramic resonator. This means the

microcontroller processes 1 million assembler commands a second, which

equates to roughly about 1,000 BASIC commands per second.

The M and X parts can be overclocked to 8 or 16MHz (multiplies speed by x2 or

x4).

Does the PICAXE support interrupts?
Yes. Many parts support a polled interrupt on the input port. Use the ‘setint’

command to setup the desired interrupt port setting.

How do I create time delays longer than 65 seconds?
The best way of creating long delays is to do minute delays with a loop, e.g. to

wait an hour (60 minutes)

for b2 = 1 to 60 ‘start a for..next loop

pause 60000 ‘wait 1 minute

next b2 ‘next loop

The PICAXE microcontroller works at a nominal 4MHz, but due to device

manufacturing tolerances there is likely to be a drift of a few seconds over long

time periods (e.g. a day). Note that the Serial LCD/Clock module (AXE033) has a

precision clock and ‘alarm clock’ function that can be used to trigger the PICAXE

at predefined interval or at certain time/dates with much greater precision. The X

parts can also be linked to the i2c DS13097 real time clock.

My program is too long! What can I do?
Tips for reducing program length (see BASIC Commands help file for more

details):

1) Use ‘let pins =’ instead of multiple high/low commands

2) Use sub-procedures for repeated code

3) Try to reduce the use of sound and serout commands, which use a lot of

memory

4) If using an LCD, store the messages in the AXE033 Serial LCD Module, rather

than in the program

5) Use eeprom and read commands to store messages in data memory (see next

page)

6) Restructure your program to reduce the number of ‘goto’ commands

7) Use a PICAXE chip with the largest memory (X1 or X2 parts)

You can use the ‘PICAXE>Check Syntax’ menu to test the length of your program

without a download.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

95

95

www.picaxe.co.uk

Do symbols increase the program length?
No, all symbols are converted back to ‘numbers’ by the computer software prior

to download and so have no affect on program length. You can use as many

symbol commands as you wish.

What notes are generated by the sound command?
The sound command generates different ‘beep’ sounds for the values 1-127.

The tune and play commands on the PICAXE-08M are specifically designed to

play tunes. See the tune command in section 2 of the manual for more details.

I need more outputs - what can I do?
Use the PICAXE-28X/28X1 or 40X/40X1 which can have up to 16 outputs. Or

connect a single output (e.g. output7) from a first PICAXE chip to input0 of a

second PICAXE-18 chip. Program the second PICAXE-18 chip with this simple

program:

main: serin 0,N2400,b1

let pins = b1

goto main

The eight outputs of the second chip can now be controlled with a serout

7,N2400,(b2) command by the first chip, where b2 contains the ‘pins’ value (0 to

255) desired on the second chip. This gives you a total of 15 useable outputs.

I need more inputs - what can I do?
Use a PICAXE-28X1 or 40X1, which can be configured to have a large number of

inputs. Remember that analogue inputs can also be used as digital inputs if

required, just see if the ‘readadc’ value is greater or less than 100. In many

applications switches can also be connected in parallel on a single input pin.

How do I test more than one input at once?
Use the following command to test two inputs together

if pin0 = 1 and pin1 = 1 then...

or either of two inputs

if pin0 = 1 or pin1 = 1 then...

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

96

96

www.picaxe.co.uk

Appendix I - Advanced Technical Information and FAQ

This appendix provides advanced technical data for users who wish to understand

more advanced technical data about the PICAXE microcontrollers. This

information is not required for normal PICAXE use.

These notes presume the user is familiar with PIC microcontrollers, their

configuration fuse settings and programming in assembler code.

What is a PICAXE microcontroller?
A PICAXE microcontroller is a Microchip PIC microcontroller that has been pre-

programmed with the PICAXE bootstrap code. The bootstrap code enables the

microcontroller to be reprogrammed without the need for an (expensive)

conventional programmer, making the whole download system a very low-cost

simple serial cable!

The bootstrap code also contains common routines (such as how to generate a

pause delay or a sound output), so that each download does not have to waste

time downloading this commonly required data. This makes the download time

much quicker.

Why use the PICAXE instead of assembler / C?
The PICAXE uses a simple BASIC language (or flowcharts) that younger students

can start generating programs with within an hour of first use. It is much easier to

learn and debug than either C or assembler code.

The second advantage is the direct cable download method. The software is free

and so the only cost per computer is a low-cost download cable. This enables

students to buy their own cable and for schools to equip every single computer

with a download cable. Other systems that require an expensive programmer are

generally too expensive to implement in this way.

Finally as the PICAXE chip never leaves the board, all leg damage (as can occur

when the chip is moved back and forth from a programmer) is eliminated.

How is the program stored within the microcontroller?
The program is stored in either data or program memory depending on the

microcontroller type. The following table shows how program, read/write/

eeprom data and readmem/writemem data is stored.

Program Read/Write Readmem/Writemem
PICAXE-08 Data Data N/A

PICAXE-08M Data Data N/A

PICAXE-14M Data Data N/A

PICAXE-20M Data Data N/A

PICAXE-18 Data Data N/A

PICAXE-18M Data Data N/A

PICAXE-18A Program Data (256) N/A

PICAXE-18X Program Data (256) N/A (use i2c)

PICAXE-28A Program Data (64) Program (256)

PICAXE-28X Program Data (128) N/A (use i2c)

PICAXE-28X1 Program Data (256) N/A (use readtable or i2c)

PICAXE-40X Program Data (128) N/A (use i2c)

PICAXE-40X1 Program Data (256) N/A (use readtable or i2c)

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

97

97

www.picaxe.co.uk

The program and read/write memory is overwritten with every download. Use the

eeprom command to preload data (within the program) for the read/write

commands. The readmem/writemem memory is not changed during a download.

How many times can the microcontroller be reprogrammed?
PICAXE chips can be reprogrammed at least 100,000 times. Note these are

minimum values and the actual values may be much greater.

How is a download started?
When the computer starts a download an interrupt is generated on the serial

input pin on the PICAXE. This interrupts the main program and puts the PICAXE

into a state for a new download to be received. Therefore you must ensure that

the 'serial in' pin is tied to ground (0V) via the 22k/10k resistors on ALL project

boards for reliable operation of the microcontroller (to prevent unwanted

‘floating pin’ interrupt signals).

What are the electrical characteristics of the PICAXE (e.g. operating voltage range etc.)?
The electrical characteristics of the PICAXE microcontroller is dependent upon

the base PIC microcontroller that is programmed with the PICAXE bootstrap

code to create the PICAXE microcontroller. Therefore see the Microchip datasheet

(from www.microchip.com) for the appropriate microcontroller characteristics.

The lowest recommended operating voltage from these datasheets is 3V (Note

this is the ‘operating voltage’ only. You may require a higher voltage (minimum

4.5V recommended) whilst doing the actual serial download from the computer

to ensure accurate memory programming of the chip). X2 parts are also available

in special 1.8V to 3.3V variants.

Does the PICAXE set the watchdog timer fuse?
Yes, the watchdog timer is set and used within a number of commands such as

sleep and nap. The user cannot alter it’s settings.

Does the PICAXE set the power-up timer fuse?
Yes.

Does the PICAXE set the brown-out fuse?
Yes for the M, X1 and X2 parts, no for other parts. An unfortunate side effect of

the brown-out fuse on the other parts is that it restricts the lowest operating

voltage of the micro-controller to about 4.2V. As many users wish to use 3V

battery packs, the brown-out fuse is not set on the PIC microcontrollers with a

4.2V brown-out.

The enablebod/disabledbod command can enable/disable the brown out

function on M, X1 and X2 parts.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

98

98

www.picaxe.co.uk

How does the PICAXE do ADC (analogue-to-digital) conversions?
The PICAXE-08 and PICAXE-18 use the internal comparator to do a low

resolution ADC step comparison, providing 16 discrete analogue values. The

other PICAXE microcontrollers all use the internal ADC to do a full 256 step (8

bit) conversion. Although the microcontrollers are technically capable of 10 bit

conversions, this is converted by the readadc command into byte (8 bit) values

for ease of use via the byte (b1 etc.) variables, which makes the maths easier for

students. This gives a resolution of about 0.02V (at 5V supply) which is adequate

for almost all educational projects. Most parts also have a separate 10 bit adc

read option (1024 steps), via the readadc10 command.

Can you supply the bootstrap program so that I can make my own PICAXE?
No. The small royalty made on each PICAXE chip sold is the only financial

benefit to our company to support the PICAXE system - the software is free and

the cables/development kits are sold at very low cost. Therefore we do not allow

anyone else to manufacture PICAXE microcontrollers.

Can I mix assembler in with the BASIC code?
No. The program and bootstrap code cannot be ‘mixed’ with assembler code, this

is not good programming practice. However you can achieve the same goal by

converting your BASIC into assembler code using the automatic conversion

feature, and then editing the converted assembler code program (see below).

Can I see the assembler code that is downloaded into the PICAXE?
If you own a Revolution Serial PIC Programmer (part BAS800), you can convert

PICAXE BASIC programs into assembler code, to program blank PICs or to just

learn how assembler code works by 'disassembly'. However some of the more

complex commands (e.g. serin) are not supported, and the assembler code

program generated is optimised for sequential learning (not optimised for

compactness as with the PICAXE system) and so the code is not identical to that

downloaded to the PICAXE.

Can you alter the input/output pin arrangement of the PICAXE microcontroller?
The PICAXE-08 has 5 pins that can be configured as desired. The 28 and 40 pin

PICAXE can also be altered to give more inputs or outputs. The 18 pin input/

output pin arrangements are fixed and cannot be altered.

How long a program can I download into the PICAXE microcontroller?
This varies on the commands used, as not all commands use the same amount of

memory.

There is no fixed ‘byte’ formula as to memory usage e.g. pause 5, pause 50 and

pause 500 will all take different amounts of memory space! To calculate memory

usage use the ‘Check Syntax’ option from the PICAXE menu. This will report the

amount of memory used.

Do symbols increase the program length?
No, all symbols are converted back to ‘numbers’ by the computer software prior

to download and so have no affect on program length. You can use as many

symbol commands as you wish.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

99

99

www.picaxe.co.uk

Do I need to erase the device?
How do I stop a program in the PICAXE microcontroller running?

Each download automatically overwrites the whole of the previous program.

There is generally no need to erase the memory at any point. However if you want

to stop a program running you can select the ‘Clear Hardware Memory’ menu to

download an ‘empty’ program into the PICAXE memory.

Why is an ‘empty’ program still 3 bytes long?
Each downloaded program contains some configuration data, and an ‘end’

command is always added automatically to the end of each downloaded

program. Therefore an ‘empty’ program on screen will not generate a zero byte

program.

How vulnerable to damage are the microcontrollers?
The microcontrollers have a high level of static protection built into each pin and

so generally handling them without any personal static protection in an

educational (non-production) environment is acceptable.

Can I use i2c EEPROMs with the PICAXE?
The X parts support all i2c parts via the i2cslave, readi2c and writei2c commands.

Can the PICAXE count pulses?
The M and X parts support the count command which can count the number of

pulses in a defined period. All parts support the pulsin command to measure the

length of a pulse.

Can I control servos using the PICAXE?
Can I do PWM control of a motor using the PICAXE?

The M and X parts have a dedicated pwmout command which acts on one or two

of the pins for full pwm control.

The A, M and X parts have a ‘servo’ command that allows control of up to 8

servos (one on each output). The servo command users the internal timer and an

interrupt, so that the pulses are maintained ‘in the background’ all the time that

the PICAXE is running the main program.

The servo command produces a pulse of length 0.01ms to 2.55 ms approximately

every 20ms. Therefore it can also be used as a simple background PWM output

with PWM mark:space ratios between 1:2000 and 1:8 (approx).

How fast does the PICAXE operate?
Can I overclock the PICAXE?

The PICAXE-08/18/18A/18M/18X microcontrollers have an internal 4MHz

resonator, and the PICAXE-28/40 family use an external 4MHz ceramic resonator.

This means the microcontroller processes 1 million assembler commands a

second, which equates to roughly about 1000 BASIC commands per second.

Different commands take different times to execute depending on how complex

their ‘assembler code’ is.

The M and X parts can be overclocked to 8 or 16MHz (see the Over-clocking

Appendix for restrictions).

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

100

100

www.picaxe.co.uk

Why does the PICAXE only support up to 4800 baud rate on serout/serin commands?
Can I send and receive serial data via the download cable?

The maximum baud rates were originally selected for reliable operation with

microcontrollers with internal resonator. The early internal resonators were not

as accurate as an external device, and a slower baud rate ensures reliable

operation. The X1 and X2 parts support much higher baud rates via the hardware

EUSART using the hserout command.

Many parts can send data via the download cable via a ‘sertxd’ command and

receive data via the ‘serrxd’ command.

Does the PICAXE support interrupts?
The PICAXE uses the internal microcontroller interrupts for some of it’s BASIC

commands (e.g. servo). Therefore the internal interrupts are not available for

general use. However the A, M and X parts all support a single ‘polled’ interrupt

on the input port. Use the ‘setint’ BASIC command to setup the desired interrupt

port setting to enable the polled interrupt. The polled interrupt scans the input

port between every BASIC command (and constantly during pause commands),

and so activates very quickly.

Section 1

GETTING STARTED

revolution (c) Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk
Version 6.9 07/2009 All rights reserved.

101

101

www.picaxe.co.uk

Software Version

The latest version of the Programming Editor and all other titles can be

downloaded from the following website:

www.picaxe.co.uk

A very active forum for the discussion of PICAXE projects, and for technical

support, also exists at

www.picaxeforum.co.uk

Contact Address

Revolution Education Ltd
http://www.rev-ed.co.uk/

Acknowledgements

Revolution Education would like to thank the following:

Clive Seager

John Bown

LTScotland

Higher Still Development Unit

UKOOA

	Contents
	About this manual
	Software Overview
	Software Comparison
	Software Quick Choice Guide
	Third Party Software
	Technical Support Forum
	Quick Start
	At a glance - specifications:
	At a glance - download circuit:
	At a glance - pinout diagrams:
	At a glance - pinout diagrams (X2 parts):
	What is a microcontroller?
	Microcontrollers, input and outputs
	What is the PICAXE system?
	Building your own circuit / PCB
	What is a PICAXE microcontroller?
	PICAXE chip labels
	Which PICAXE chip?
	PICAXE Variant Feature Overview
	Using the PICAXE system.
	PICAXE Starter Packs
	PICAXE Project Boards
	Software Installation
	Installation on RM CC3 networks
	Installing the AXE027 USB cable drivers
	Downloading over a network using TCP/IP
	PICAXE Power Supply
	PICAXE-08/08M Pinout and Circuit
	PICAXE-14M Pinout and Circuit
	PICAXE-20M/20X2 Pinout and Circuit
	PICAXE-18/18A/18M/18X Pinout and Circuit
	PICAXE-28A/28X/28X1/28X2 Pinout and Circuit
	PICAXE-28X2 Module (AXE200)
	PICAXE-40X/40X1/40X2 Pinout and Circuit
	USB Download Circuit
	Serial Download Circuit
	Enhanced Serial Download Circuit
	Download Cables
	Reset Circuit
	Resonator
	Testing the System
	Hard-reset procedure
	Download CheckList
	Understanding the PICAXE memory.
	Flowchart, Logic or BASIC?
	BASIC Simulation
	Interfacing Circuit Summary
	Tutorial 1 - Understanding and using the PICAXE System
	Tutorial 2 - Using Symbols, Comments & White-space
	Tutorial 3 - For…Next Loops
	Tutorial 4 - Making Sounds
	Tutorial 5 - Using Digital Inputs
	Tutorial 6 - Using Analogue Sensors
	Tutorial 7 - Using Debug
	Tutorial 8 - Using Serial Terminal with Sertxd
	Tutorial 9 - Number Systems
	Tutorial 10 - Sub-procedures
	Tutorial 11 - Using Interrupts
	The next step - your own PICAXE project!
	Appendix A - BASIC Commands Summary
	Appendix B - Over-clocking at higher frequencies
	Appendix C - Configuring the PICAXE-14M Input-Output Pins
	Appendix D - Configuring PICAXE-08 / 08M Input-Output Pins
	Appendix E - Configuring PICAXE-28X / 28X1 Input-Output Pins
	Appendix F - Configuring PICAXE-40X / 40X1 Input-Output Pins
	Appendix G - Using Flowcharts
	Appendix H - Frequently Asked Questions (FAQ).
	Appendix I - Advanced Technical Information and FAQ
	Software Version
	Contact Address
	Acknowledgements

