

DATA SHEET

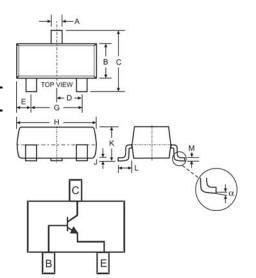
Transistors

Order code	Manufacturer code	Description
47-3354	n/a	BC846B SOT-23 NPN TRANSISTOR (1B) (RC)
47-3356	n/a	BC847B NPN TRANSISTOR SOT-23 (RC)
47-3358	n/a	BC848B SOT-23 NPN TRANSISTOR (1K) (RC)

Transistors	Page 1 of 5
The enclosed information is believed to be correct, Information may change ±without noticeqdue to	Revision A
product improvement. Users should ensure that the product is suitable for their use. E. & O. E.	20/02/2007

Sales: 01206 751166 Sales@rapidelec.co.uk Technical: 01206 835555 Tech@rapidelec.co.uk Fax: 01206 751188 www.rapidonline.com

BC846A - BC848C


NPN SURFACE MOUNT SMALL SIGNAL TRANSISTOR

Features

- Ideally Suited for Automatic Insertion
- Complementary PNP Types Available (BC856-BC858)
- For Switching and AF Amplifier Applications
- Lead Free/RoHS Compliant (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: SOT-23
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe).
- Pin Connections: See Diagram Marking Information: See Page 4 Ordering Information: See Page 4
- Approximate Weight: 0.008 grams

	SOT-23							
Dim	Min	Max						
Α	0.37	0.51						
В	1.20	1.40						
С	2.30	2.50						
D	0.89	1.03						
E	0.45	0.60 2.05 3.00 0.10						
G	1.78							
Н	2.80							
J	0.013							
K	0.903	1.10						
L	0.45	0.61						
М	0.085	0.180						
α	0°	8°						
All Dimensions in mm								

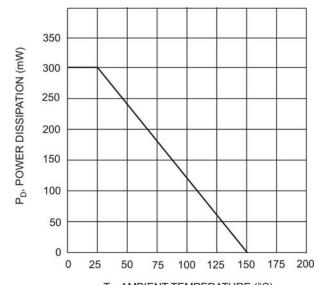
Marking Code (Note 2)											
Type Marking Type Marking											
BC846A	1A, K1Q	BC847C	1G, K1M								
BC846B	1B, K1R	BC848A	1J, K1J, K1E, K1Q								
BC847A	1E, K1E, K1Q	BC848B	1K, K1K, K1F, K1R								
BC847B	1F, K1F, K1R	BC848C	1L, K1L, K1M								

Maximum Ratings @T_A = 25°C unless otherwise specified

Character	istic	Symbol	Value	Unit
Collector-Base Voltage	BC846 BC847 BC848	V _{CBO}	80 50 30	٧
Collector-Emitter Voltage	BC846 BC847 BC848	V _{CEO}	65 45 30	٧
Emitter-Base Voltage	BC846, BC847 BC848	V _{EBO}	6.0 5.0	V
Collector Current		Ic	100	mA
Peak Collector Current		I _{CM}	200	mA
Peak Emitter Current		I _{EM}	200	mA
Power Dissipation (Note 1)		P _d	300	mW
Thermal Resistance, Junction to Am	$R_{ hetaJA}$	417	°C/W	
Operating and Storage Temperature	e Range	T_j , T_{STG}	-65 to +150	°C

Notes:

- 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- Current gain subgroup "C" is not available for BC846.
- 3. No purposefully added lead.



Electrical Characteristics @T_A = 25°C unless otherwise specified

Characterist	tic	Symbol	Min	Тур	Max	Unit	Test Condition
Collector-Base Breakdown Voltage		80	_	_			
	$V_{(BR)CBO}$	50	_	_	V	$I_C = 10\mu A, I_B = 0$	
Callagtar Emittar Progledown Valtas		30 65	_				
Collector-Emitter Breakdown Voltag	ge (Note 4) BC846 BC847	$V_{(BR)CEO}$	45		_	V	$I_{C} = 10 \text{mA}, I_{B} = 0$
	BC848	▼ (BR)CEO	30	_	_	•	10 - 10111111, 1B - 0
Emitter-Base Breakdown Voltage	BC846, BC847	\/	6			V	1 1 1 1 0
(Note 3)	BC848	$V_{(BR)EBO}$	5	_	_	V	$I_E = 1 \mu A, I_C = 0$
H-Parameters							
Small Signal Current Gain	Current Gain Group A	h _{fe}	_	220	_	_	
	В	h _{fe}	_	330	_		
Input Impedance	C Current Gain Group A	h _{fe} h _{ie}	_	600 2.7	_	kΩ	
input impedance	R	h _{ie}		4.5		kΩ	$V_{CE} = 5.0V, I_{C} = 2.0mA,$
	č	h _{ie}	_	8.7	_	kΩ	f = 1.0kHz
Output Admittance	Current Gain Group A	h _{oe}	_	18	_	μS	
·	В	h _{oe}	_	30	_	μS	
	Ç	h _{oe}	_	60	_	μS	
Reverse Voltage Transfer Ratio	A	h _{re}	_	1.5x10 ⁻⁴	_	_	
Current Gain Group	B C	h _{re} h _{re}	_	2x10 ⁻⁴ 3x10 ⁻⁴	_	_	
DC Current Gain	Current Gain Group A	Tire	110	180	220		
DC Guilent Gain	B	$h_{\sf FE}$	200	290	450	_	$V_{CE} = 5.0 \text{V}, I_{C} = 2.0 \text{mA}$
	(Note 4) C		420	520	800		TCE 0.0 1, 10 2.0
Collector-Emitter Saturation Voltage	o (Noto 4)	\/		90	250	mV	$I_C = 10 \text{mA}, I_B = 0.5 \text{mA}$
Collector-Emitter Saturation voltage	s (Note 4)	$V_{CE(SAT)}$	_	200	600	IIIV	$I_C = 100 \text{mA}, I_B = 5.0 \text{mA}$
Base-Emitter Saturation Voltage (N	ote 4)	$V_{BE(SAT)}$	_	700 900	_	mV	$I_C = 10\text{mA}, I_B = 0.5\text{mA}$ $I_C = 100\text{mA}, I_B = 5.0\text{mA}$
Dana Fasikan Vallana (Nata A)		.,	580	660	700		$V_{CE} = 5.0V, I_{C} = 2.0mA$
Base-Emitter Voltage (Note 4)		$V_{BE(ON)}$	_	_	770	mV	$V_{CE} = 5.0V, I_{C} = 10mA$
Collector-Cutoff Current (Note 4)	BC846	I _{CES}	_	_	15	nA	$V_{CE} = 80V$
	BC847	I _{CES}	_	_	15	nA	$V_{CE} = 50V$
	BC848	I _{CES}	_	_	15 15	nA nA	$V_{CE} = 30V$ $V_{CB} = 40V$
		I _{CBO} I _{CBO}			5.0	μA	$V_{CB} = 40V$ $V_{CB} = 30V$, $T_A = 150$ °C
						'	$V_{CE} = 5.0V, I_{C} = 10mA,$
Gain Bandwidth Product	f⊤	100	300		MHz	f = 100MHz	
Collector-Base Capacitance	C_{CBO}	-	3.0	-	pF	$V_{CB} = 10V, f = 1.0MHz$	
							$V_{CE} = 5V$, $I_{C} = 200\mu A$,
Noise Figure		NF	_	2	10	dB	$R_S = 2.0k\Omega$,
						$f = 1.0kHz$, $\Delta f = 200Hz$	

Notes: 4. Short duration pulse test used to minimize self-heating effect.

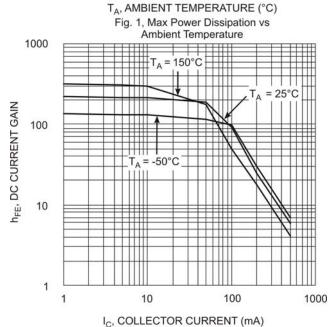
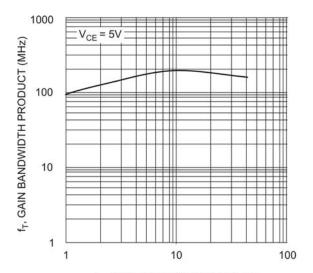
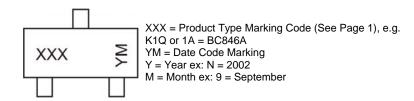



Fig. 3, DC Current Gain vs. Collector Current

0.4 V_{CE(SAT)}, COLLECTOR TO EMITTER SATURATION VOLTAGE (V) 0.3 = 25°C 0.2 T_A = 150°C 0.1 T_A = -50°C 0 0.1 1000 10 100 I_{C} , COLLECTOR CURRENT (mA)

Fig. 2 Collector Emitter Saturation Voltage vs. Collector Current

I_C, COLLECTOR CURRENT (mA)
Fig. 4, Gain Bandwidth Product vs Collector Current


Ordering Information (Note 5)

Device*	Packaging	Shipping			
BC84xx-7-F	SOT-23	3000/Tape & Reel			

xx = device type, e.g. BC846A-7-F.

Notes: 5. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

Date Code Key

Year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Code	J	K	L	М	N	Р	R	S	Т	U	V	W	Χ	Υ	Z
Month	Jan	Fe	b I	Mar	Apr	May	Ju	n	Jul	Aug	Sep	Oct	: 1	lov	Dec
Code	1	2		3	4	5	6		7	8	9	0		N	D

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.