WINSTAR Display

OLED SPECIFICATION

Model No:

WEO009664ALPP3N00000

第1頁,共27頁

Contents

- 1. Basic Specifications
- 2. Absolute Maximum Ratings
- 3. Optics & Electrical Characteristics
- 4. Functional Specification
- 5. Reliability
- 6. Outgoing Quality Control Specifications
- 7. Precautions When Using These OLED Display Modules

SPECIFICATION

Ver:A

CUSTOMER :

MODULE NO.: WEO009664ALPP3N00000

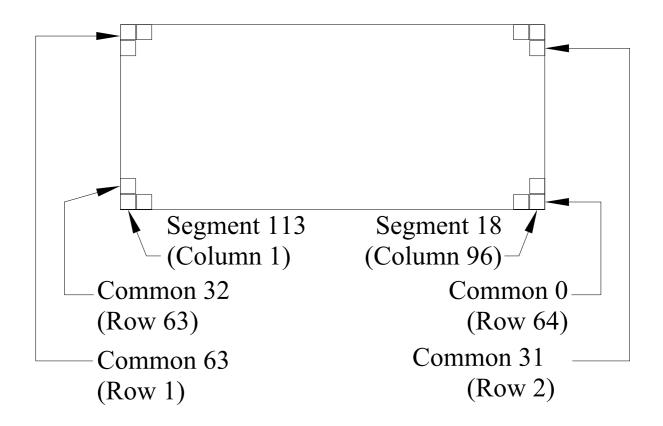
APPROVED BY:		
(FOR CUSTOMER USE ONLY)		
	PCB VERSION:	DATA:

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY
ISSUED DATE:			
ISSUED DATE:			

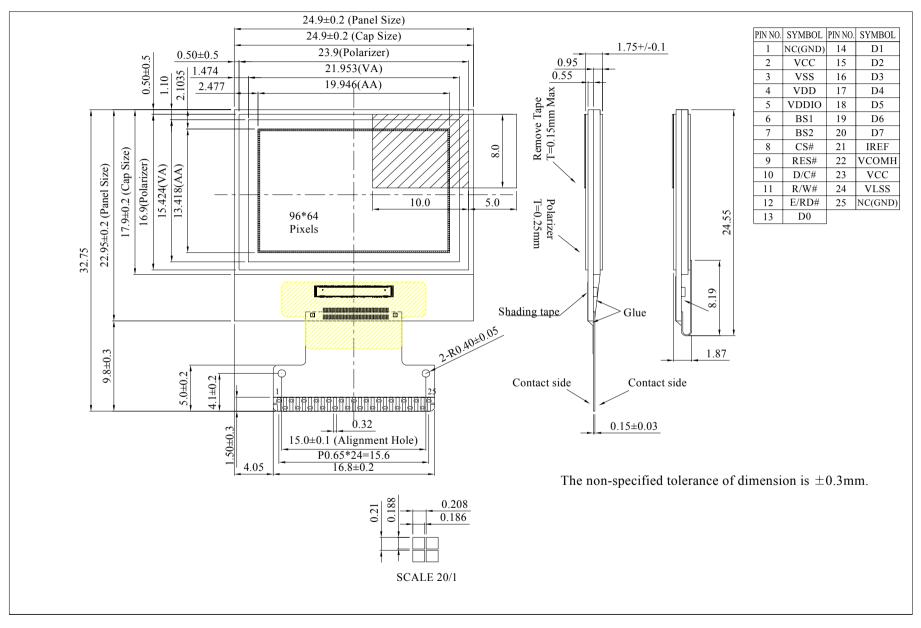
MODLE NO:

RECORDS OF REVISION		DN	DOC. FIRST ISSUE
VERSION	DATE	REVISED PAGE NO.	SUMMARY
0	2012.07.03		First issue
A	2012.08.27	19	Correct Reliability

1. Basic Specifications


1.1 Display Specifications

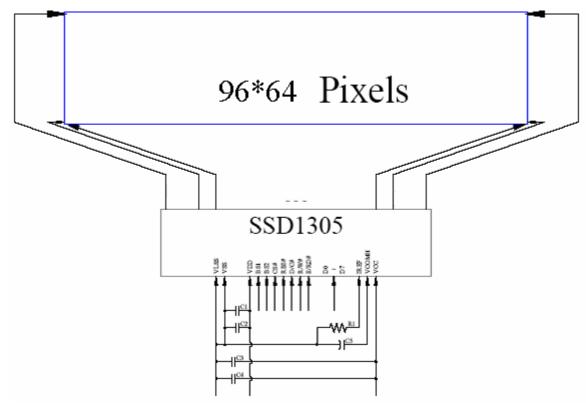
- 1) Display Mode: Passive Matrix
- 2) Display Color: Monochrome (Yellow)
- 3) Drive Duty: 1/64 Duty


1.2 Mechanical Specifications

- 1) Outline Drawing: According to the annexed outline drawing
- 2) Number of Pixels: 96×64
- 3) Panel Size: 24.9 × 22.95 × 1.75 (mm)
- 4) Active Area: 19.946 × 15.424 (mm)
- 5) Pixel Pitch: 0.208×0.21 (mm)
- 6) Pixel Size: 0.186 × 0.188 (mm)

1.3 Active Area & Pixel Construction

1.4 Mechanical Drawing



第6頁,共27頁

1.5 Pin Definition

Pin	Symphal	L/O	L/O Expetion				
Number	Symbol	I/O	Function				
1.	N.C. (GND)	-	ReservedPin(SupportingPin) The supporting pins can reduce the function pins. These pins must beconnect				
2.	VCC	Р	PowerSupplyforOLED Panel This is the most positive voltage supp supplied externally.	ply pin of the chip.It must be			
3.	VSS	Р	GroundofLogicCircuit This is a ground pin. It also acts as a ref be connected to external ground.	ference for thelogic pins. It must			
4.	VDD	Р	PowerSupplyforLogicCircuit This is a voltage supply pin. It must be connected to external source.				
5.	VDDIO	Р	Power supply for interface logic level. t should be match with MCU interface volue equal or lower than VDD.	ltage level. VDDIO must always			
6.	BS1 BS2	Ι	CommunicatingProtocolSelectThese pins are MCU interface selection input. See thefollowing table:68XX-parallel80XX-parallelSerialI2C				
7.	BS2		BS1 0 1 BS2 1 1	$\begin{array}{c c} 0 & 1 \\ \hline 0 & 0 \\ \end{array}$			
8.	CS#	Ι	ChipSelect This pin is the chip select input. T communication only when CS# is pulled	-			
9.	RES#	Ι	PowerResetforControllerandDriver This pin is reset signal input. When the chip is executed.	e pin is low, initialization of the			
10.	D/C#	Ι	Data/CommandControl This pin is Data/Command control pin. input at D7~D0 is treated as display data input at D7~D0 will betransferred to detailrelationship to MCU interface sig Characteristics Diagrams. When the pin is pulled high and serial in at SDIN is treated as data. When it ispull transferred to the command register. In I2 forslave address selection.	When the pin is pulled low, the o the command register. For mals, please refer to the Timing terface mode isselected, the data led low, the data at SDIN will be			
11.	R/W#	Ι	Read/WriteSelectorWrite This pin is MCU interface input. Who microprocessor, this pin will be used input. Pull this pin to"High" for read r writemode. When 80XXinterface mode is selected, t input. Data write operation is initiatedwh CS# is pulled low.	asRead/Write (R/W#) selection mode and pull it to "Low" for this pin will bethe Write (WR#)			
12.	E/RD#	Ι	Read/WriteEnableorRead This pin is MCU interface input. Whe microprocessor, this pin will be used as to operation is initiated whenthis pin is pu low. When connecting to an 80XX-microproce (RD#) signal. Data read operation isinitia	theEnable (E) signal. Read/write lled high and the CS# is pulled cessor, this pinreceives the Read			

			and CS# is pulledlow.			
13.						
14.			HostDataInput/OutputBus			
15.			These pins are 8-bit bi-directional data bus to beconnected to the			
16.	D0~D7	I/O	microprocessor's data bus. Whenserialmode is selected, D1 will be the			
17.	D0~D7	1/0	serial data input SDINand D0 will be the serial clock input SCLK. When			
18.			I2Cmode is selected, D2 & D1 should be tired together andserve a SDAout & SDAin in application and D0 is theserial clock input SCL.			
19.						
20.						
21.	IREF	Ι	CurrentReferenceforBrightnessAdjustment This pin is segment current reference pin. A resistorshould be connected between this pin and VSS. Set thecurrent lower than 10µA.			
22.	VCOMH	0	VoltageOutputHighLevelforCOMSignal This pin is the input pin for the voltage output high levelfor COM signals. A capacitor should be connectedbetween this pin and VSS.			
23.	VCC	Р	PowerSupplyforOLEDPanel This is the most positive voltage supply pin of the chip.It must be supplied externally.			
24.	VLSS	Р	GroundofAnalogCircuit This is an analog ground pin. It should be connected to VSSexternally.			
25.	N.C. (GND)	-	ReservedPin(SupportingPin) The supporting pins can reduce the influences fromstresses on the function pins. These pins must beconnected to external ground.			

MCU Interface Selection:

BS1 and BS2

Pins connected to MCU interface: CS#, RES#, D/C#, R/W#, E/RD#, and D0~D7

- C1, C3: 0.1µF
- C2: 4.7µF
- C4: 10µF
- C5: $4.7\mu F / 25V$ Tantalum Capacitor
- R1: 910k Ω , R1 = (Voltage at IREF VSS) / IREF

2 .	Absolute	Maximum	Ratings
-			

Parameter	Symbol	Min	Max	Unit	Notes
Supply Voltage for Logic	V _{DD}	-0.3	4	V	1, 2
Supply Voltage for Display	V _{CC}	0	15	V	1, 2
Operating Temperature	T _{OP}	-40	+80	°C	-
Storage Temperature	T _{STG}	-40	+80	°C	-

Note 1: All the above voltages are on the basis of "VSS = 0V".

Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. "Optics & Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate.

3. Optics & Electrical Characteristics

Unit

cd/m

degree

Characteristics Symbol **Conditions** Min Max Тур \overline{L}_{br} **Brightness** With Polarizer 80 100 _ (Note 3) C.I.E. (Yellow) With Polarizer 0.44 0.48 0.52 (x) Dark Room Contrast 0.46 0.50 0.54 (y) >2000:1 CR >160 View Angle -

3.1 Optics Characteristics

Optical measurement taken at $V_{DD} = 2.8V$, $V_{CC} = 12.5V$.

Software configuration follows Section 4.4 Initialization.

3.2 DC Characteristics

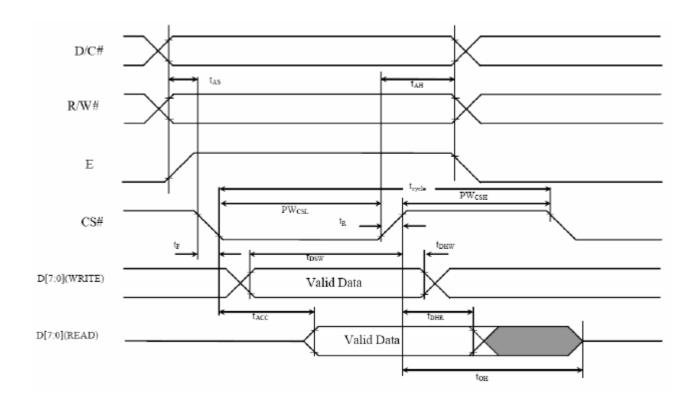
Characteristics	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage for Logic	V _{DD}		2.4	2.8	3.5	V
Supply Voltage for Display High Level Input	V _{CC} V _{IH}	Note 3 $I_{OUT} = 100\mu A, 3.3 MHz$	12.0 0.8×V _{DD}	12.5	13.0 V _{DD}	V V
Low Level Input	V _{IL}	$I_{OUT} = 100 \mu A, 3.3 MHz$	0	-	$0.2 \times V_{DD}$	V
High Level Output	V _{OH}	$I_{OUT} = 100 \mu A, 3.3 MHz$	$0.9 \times V_{DD}$	-	V _{DD}	V
Low Level Output	V _{OL}	$I_{OUT} = 100 \mu A, 3.3 MHz$	0	-	$0.1 \times V_{DD}$	V
Operating Current for V _{DD} Operating Current for V _{co}	I DD I	Note 4	-	180 20	300 25	μA mA
CC	CC	Note 5	-	28	35	mA
Sleep Mode Current for V_{DD}	I DD, SLEEP		-	1	5	μA
Sleep Mode Current for V_{CC}	I CC, SLEEP		-	1	5	μΑ

Note 3: Brightness (L_{br}) and Supply Voltage for Display (V_{CC}) are subject to the change of the

panel characteristics and the customer's request.

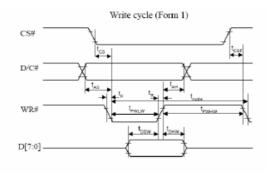
Note 4: $V_{DD} = 2.8V$, $V_{CC} = 12.5V$, 50% Display Area Turn on.

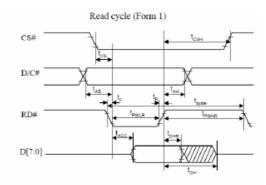
Note 5: $V_{DD} = 2.8V$, $V_{CC} = 12.5V$, 100% Display Area Turn on.

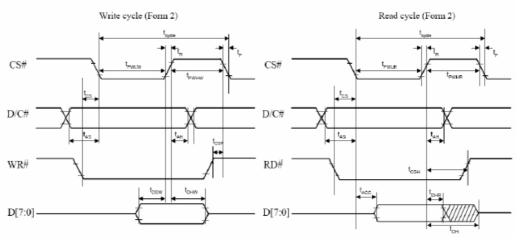

* Software configuration follows Section 4.4 Initialization.

3.3 AC Characteristics

Symbol	Description	Min	Max	Unit
t	System Cycle Time	300	-	ns
t	Address Setup Time	0	-	ns
t _{AH}	Address Hold Time	0	-	ns
t DSW	Write Data Setup Time	40	-	ns
t DHW	Write Data Hold Time	7	-	ns
t DHR	Read Data Hold Time	20	-	ns
t _{OH}	Output Disable Time	-	70	ns
t ACC	Access Time	-	140	ns
ACC	Chip Select Low Pulse Width (Read)	120		
PW			-	ns
CSL	Chip Select Low Pulse width (Write)	60		
PW	Chip Select High Pulse Width (Read)	60	-	ns
r w _{CSH}	Chip Select High Pulse Width (Write)	60		
t _R	Rise Time	-	15	ns
t F	Fall Time	-	15	ns

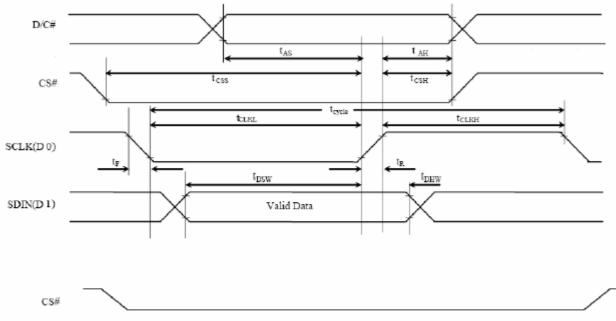

3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics:

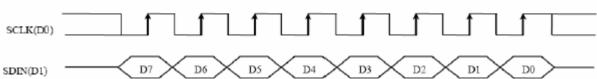

* ($V_{DD} - V_{SS} = 2.4$ V to 3.5V, $T_a = 25^{\circ}$ C)



Symbol	Description	Min	Max	Unit
t	Clock Cycle Time	300	-	ns
t	Address Setup Time	10	-	ns
t AH	Address Hold Time	0	-	ns
t _{DSW}	Write Data Setup Time	40	-	ns
t DHW	Write Data Hold Time	7	-	ns
t DHR	Read Data Hold Time	20	-	ns
t _{OH}	Output Disable Time	-	70	ns
t _{ACC}	Access Time	-	140	ns
t _{PWLR}	Read Low Time	120	-	ns
t PWLW	Write Low Time	60	-	ns
t PWHR	Read High Time	60	-	ns
t PWHW	Write High Time	60	-	ns
t _{CS}	Chip Select Setup Time	0	-	ns
t _{CSH}	Chip Select Hold Time to Read Signal	0	-	ns
t CSF	Chip Select Hold Time	20	-	ns
t _R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns

* ($V_{DD} - V_{SS} = 2.4$ V to 3.5V, $T_a = 25$ °C)

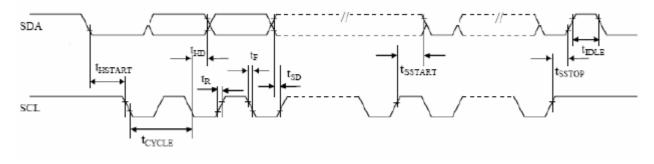



第 13 頁,共 27 頁

3.3.3 Serial Interface Timing Characteristics:

Symbol	Description	Min	Max	Unit
t	Clock Cycle Time	250	-	ns
t _{AS}	Address Setup Time Address Hold Time	150 150	-	ns ns
t AH	Address fiold fille	150	_	115
t CSS	Chip Select Setup Time	120	-	ns
t _{CSH}	Chip Select Hold Time	60	-	ns
t _{DSW}	Write Data Setup Time	50	-	ns
t DHW	Write Data Hold Time	15	-	ns
t _{CLKL}	Serial Clock Low Time	100	-	ns
t _{CLKH}	Serial Clock High Time	100	-	ns
t R	Rise Time	-	15	ns
t _F	Fall Time	-	15	ns

*
$$(V_{DD} - V_{SS} = 2.4V \text{ to } 3.5V, T_a = 25^{\circ}C)$$

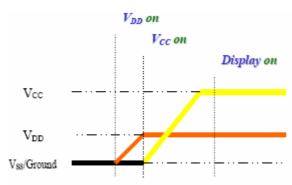


3.3.4 $I^{2}C$ Interface Timing Characteristics:

Symbol	Description	Min	Max	Unit
t	Clock Cycle Time	2.5	-	us
t _{HSTART}	Start Condition Hold Time	0.6	-	us
t	Data Hold Time (for "SDA _{OUT} " Pin)		-	ns
HD	Data Hold Time (for "SDA _{IN} " Pin) Data Setup Time	300 100	-	ns
t _{SD}	Start Condition Satur Time	0.6		110
SSTART	Start Condition Setup Time (Only relevant for a repeated Start condition)	0.0	-	us
t _{SSTOP}	Stop Condition Setup Time	0.6	-	us
t R	Rise Time for Data and Clock Pin		300	ns
t _F	Fall Time for Data and Clock Pin		300	ns
t _{IDLE}	Idle Time before a New Transmission can Start	1.3	-	us

* (V_{DD} - V_{SS} = 2.4V to 3.5V, T_a = 25°C)

4. Functional Specification

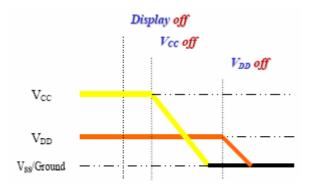

4.1. Commands

Refer to the Technical Manual for the SSD1305

4.2 Power down and Power up Sequence

To protect OLED panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OLED panel enough time to complete the action of charge and discharge before/after the operation. 4.2.1 Power up Sequence:

- 4.2.1 Fower up Seque
- 1. Power up VDD
- 2. Send Display off command
- 3. Initialization
- 4. Clear Screen
- 5. Power up VCC
- 6. Delay 100ms
- (When VCC is stable)
- 7. Send Display on command



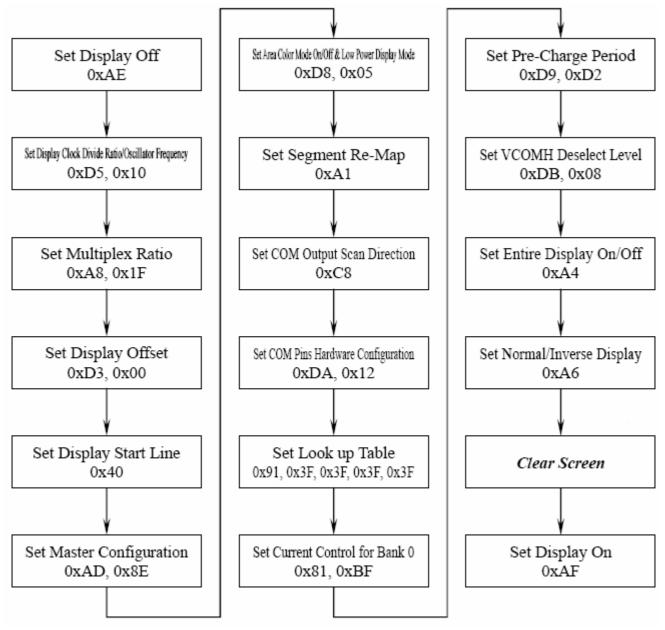
- 4.2.2 Power down Sequence:
- 1. Send Display off command
- 2. Power down VCC
- 3. Delay 100ms

(When VCC is reach 0 and panel

is completely discharges)

4. Power down VDD

第 16 頁,共 27 頁


4.3 Reset Circuit

When RES# input is low, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 132×64 Display Mode
- 3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00h and COM0 mapped to row address 00h)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 80h
- 9. Normal display mode (Equivalent to A4h command)

4.4 Actual Application Example

Command usage and explanation of an actual example <Initialization>

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.

5. Reliability

5.1 Contents of Reliability Tests

Item	Conditions	Criteria
High Temperature Operation Low Temperature Operation	80°C, 240 hrs -40°C, 240 hrs	
High Temperature Storage	80°C, 240 hrs	
Low Temperature Storage	-40°C, 240 hrs	The operational functions work.
High Temperature/Humidity Storage	60°C, 90% RH, 240 hrs	
Thermal Shock	-40°C ~85°C, 100 cycles 30 mins dwell	

* The samples used for the above tests do not include polarizer.

* No moisture condensation is observed during tests.

5.2 Lifetime

End of lifetime is specified as 50% of initial brightness reached.

Parameter	Min	Max	Unit	Condition	Notes
Operating Life Time	50,000	-	hr	80.0 cd/m^2 , 50% Checkerboard	6
Storage Life Time	50,000	-	hr	$T_a = 25^{\circ}C, 50\% RH$	-

Note 6: The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions.

5.3 Failure Check Standard

After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at $23\pm5^{\circ}$ C; $55\pm15\%$ RH.

6. Outgoing Quality Control Specifications

6.1 Environment Required

Customer's test & measurement are required to be conducted under the following conditions:

Temperature: $23 \pm 5^{\circ}C$

Humidity: 55 ± 15 %RH

Fluorescent Lamp: 30W

Distance between the Panel & Lamp: \geq 50 cm

Distance between the Panel & Eyes of the Inspector: ≥ 30 cm

Finger glove (or finger cover) must be worn by the inspector.

Inspection table or jig must be anti-electrostatic.

6.2 Sampling Plan

Level II, Normal Inspection, Single Sampling, MIL-STD-105E

6.3 Criteria & Acceptable Quality Level

Partition	AQL	Definition
Major	0.65	Defects in Pattern Check (Display On)
Minor	1.0	Defects in Cosmetic Check (Display Off)

6.3.1 Cosmetic Check (Display Off) in Non-Active Area

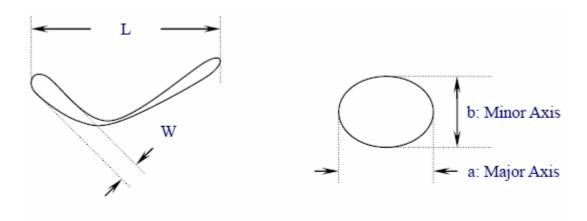
Classification	Criteria
Classification	Criteria X > 6 mm (Along with Edge) Y > 1 mm (Perpendicular to edge)
	X X X X X X X X X X X X X X X X X X X

6.3.1 Cosmetic Check (Display Off) in Non-Active Area (Continued)

Check Item	Classification	Criteria
Panel Crack	Minor	Any crack is not allowable.
Cupper Exposed (Even Pin or Film)		Not Allowable by Naked Eye Inspection
	Minor	
Film or Trace Damage	Minor	
		Not Allowable
Terminal Lead Twist	Minor	D. TWISTED LEAD
		Not Allowable
Terminal Lead Broken	Minor	A. BROKEN LEAD
Terminal Lead Prober Mark	Acceptable	

6.3.1 Cosmetic Check (Display Off) in Non-Active Area (Continued)

Check	Item	ClassificationCriteria
Terminal Lead Bent (Not Twist or Broken)	Minor	NG if any bent lead cause lead shorting.
	Minor	NG for horizontally bent lead more than 50% of its width.
Glue or Contamination on Pin (Couldn't Be Removed by Alcohol) Ink Marking on Back Side of panel (Exclude on Film)		
	Minor	Ignore for Any
	Acceptable	


6.3.2 Cosmetic Check (Display Off) in Active Area

in necessary.	Check Item	Classification
Any Dirt & Scratch on Polarizer's Protective Film	Acceptable	Ignore for not Affect the Polarizer
Scratches, Fiber, Line-Shape Defect (On Polarizer)	Minor	
Dirt, Black Spot, Foreign Material, (On Polarizer)	Minor	$ \begin{array}{c cccc} \Phi \leq 0.1 & \text{Ignore} \\ 0.1 < \Phi \leq 0.25 & n \leq 1 \\ 0.25 < \Phi & n = 0 \end{array} $
Dent, Bubbles, White spot (Any Transparent Spot on Polarizer)	Minor	$\Phi \leq 0.5$ Ignore if no Influence on Display $0.5 < \Phi \qquad n = 0$
Fingerprint, Flow Mark (On Polarizer)	Minor	Not Allowable

It is recommanded to ave	outo in algor roon	a anvironment (aloga	10k) if actual in necessary
	cute in clear roon	I Environnient (Class	TUKT II actual III IIECESSalv
			- ,

* Protective film should not be tear off when cosmetic check.

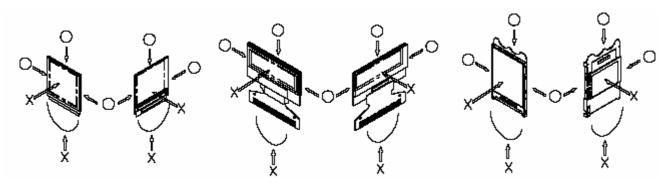
** Definition of W & L & Φ (Unit: mm): $\Phi = (a + b) / 2$

Check Item	Classification	Criteria
No Display Missing Line	Major	
	Major Major	
Pixel Short		
Darker Pixel	Major	\sim
Wrong Display Un-uniform	Major Major	

6.3.3 Pattern Check (Display On) in Active Area

7. Precautions When Using These OLED Display Modules

7.1 Handling Precautions


- 1) Since the display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position.
- 2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance.
- 3) If pressure is applied to the display surface or its neighborhood of the OLED display module, the cell structure may be damaged and be careful not to apply pressure to these sections.
- 4) The polarizer covering the surface of the OLED display module is soft and easily scratched. Please be careful when handling the OLED display module.
- 5) When the surface of the polarizer of the OLED display module has soil, clean the surface. It takes advantage of by using following adhesion tape.

* Scotch Mending Tape No. 810 or an equivalent

Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy.

Also, pay attention that the following liquid and solvent may spoil the polarizer:

- * Water
- * Ketone
- * Aromatic Solvents
- 6) Hold OLED display module very carefully when placing OLED display module into the system housing. Do not apply excessive stress or pressure to OLED display module. And, do not over bend the film with electrode pattern layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases.

- 7) Do not apply stress to the LSI chips and the surrounding molded sections.
- 8) Do not disassemble nor modify the OLED display module.
- 9) Do not apply input signals while the logic power is off.
- 10) Pay sufficient attention to the working environments when handing OLED display modules to prevent occurrence of element breakage accidents by static electricity.
 - * Be sure to make human body grounding when handling OLED display modules.
 - * Be sure to ground tools to use or assembly such as soldering irons.

- * To suppress generation of static electricity, avoid carrying out assembly work under dry environments.
- * Protective film is being applied to the surface of the display panel of the OLED display module. Be careful since static electricity may be generated when exfoliating the protective film.
- 11) Protection film is being applied to the surface of the display panel and removes
 - the protection film before assembling it. At this time, if the OLED display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5).
- 12) If electric current is applied when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above.

7.2 Storage Precautions

- When storing OLED display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps. and, also, avoiding high temperature and high humidity environment or low temperature (less than 0°C) environments. (We recommend you to store these modules in the packaged state when they were shipped from Winstar Display Co., Ltd.)
 At that time, be careful not to let water drops adhere to the packages or bags per let dewing ensure
 - At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them.
- 2) If electric current is applied when water drops are adhering to the surface of the OLED display module, when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above.

7.3 Designing Precautions

1) The absolute maximum ratings are the ratings which cannot be exceeded for OLED display module, and if these values are exceeded, panel damage may be happen.

2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible.

3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A)

- 4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices.
- 5) As for EMI, take necessary measures on the equipment side basically.
- 6) When fastening the OLED display module, fasten the external plastic housing section.

7) If power supply to the OLED display module is forcibly shut down by such errors as taking out the main battery while the OLED display panel is in operation, we cannot guarantee the quality of this OLED display module.

8) The electric potential to be connected to the rear face of the IC chip should be as follows: SSD1305 *

Connection (contact) to any other potential than the above may lead to rupture of the IC.

7.4 Precautions when disposing of the OLED display modules

1) Request the qualified companies to handle industrial wastes when disposing of the OLED display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations.

7.5 Other Precautions

1) When an OLED display module is operated for a long of time with fixed pattern may remain as an after image or slight contrast deviation may occur.

Nonetheless, if the operation is interrupted and left unused for a while, normal state can be restored. Also, there will be no problem in the reliability of the module.

- 2) To protect OLED display modules from performance drops by static electricity rapture, etc., do not touch the following sections whenever possible while handling the OLED display modules.
 - * Pins and electrodes
 - * Pattern layouts such as the FPC
- 3) With this OLED display module, the OLED driver is being exposed. Generally speaking, semiconductor elements change their characteristics when light is radiated according to the principle of the solar battery. Consequently, if this OLED driver is exposed to light, malfunctioning may occur.
 - * Design the product and installation method so that the OLED driver may be shielded from light in actual usage.
 - * Design the product and installation method so that the OLED driver may be shielded from light during the inspection processes.
- 4) Although this OLED display module stores the operation state data by the commands and the indication data, when excessive external noise, etc. enters into the module, the internal status may be changed. It therefore is necessary to take appropriate measures to suppress noise generation or to protect from influences of noise on the system design.
- 5) We recommend you to construct its software to make periodical refreshment of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise.