

LOCTITE 290

Safety Data Sheet according to (EC) No 1907/2006 as amended

Page 1 of 15

SDS No.: 153486 V005.1

Revision: 23.06.2020

printing date: 11.07.2020

Replaces version from: 16.04.2018

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

LOCTITE 290

1.2. Relevant identified uses of the substance or mixture and uses advised against

Intended use: Threadlocker

1.3. Details of the supplier of the safety data sheet

Henkel Ltd Adhesives Wood Lane End

HP2 4RQ Hemel Hempstead

Great Britain

Phone: +44 (1442) 278000 Fax-no.: +44 (1442) 278071

ua-productsafety.uk@henkel.com

1.4. Emergency telephone number

24 Hours Emergency Tel: +44 (0)1442 278497

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification (CLP):

Serious eye irritation Category 2

H319 Causes serious eye irritation.

Specific target organ toxicity - single exposure Category 3

H335 May cause respiratory irritation.

Target organ: respiratory tract irritation

Chronic hazards to the aquatic environment Category 3

H412 Harmful to aquatic life with long lasting effects.

2.2. Label elements

Label elements (CLP):

Hazard pictogram:

Contains

Cumene hydroperoxide

Signal word: Warning

Hazard statement: H319 Causes serious eye irritation.

H335 May cause respiratory irritation.

H412 Harmful to aquatic life with long lasting effects.

Supplemental information Contains: methyl methacrylate May produce an allergic reaction.

Precautionary statement: "***For consumer use only: P101 If medical advice is needed, have product

container or label at hand. P102 Keep out of reach of children. P501 Dispose of

contents/container in accordance with national regulation.***

Precautionary statement: P261 Avoid breathing vapors.

Prevention P273 Avoid release to the environment.

Precautionary statement: P337+P313 If eye irritation persists: Get medical advice/attention.

Response

2.3. Other hazards

None if used properly.

Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.

SECTION 3: Composition/information on ingredients

3.2. Mixtures

General chemical description:

Anaerobic Sealant

Declaration of the ingredients according to CLP (EC) No 1272/2008:

Hazardous components CAS-No.	EC Number REACH-Reg No.	content	Classification
Cumene hydroperoxide 80-15-9	201-254-7 01-2119475796-19	1- < 3 %	Acute Tox. 4; Dermal H312 STOT RE 2 H373
			Acute Tox. 4; Oral H302 Org. Perox. E
			H242 Acute Tox. 3; Inhalation H331
			Aquatic Chronic 2 H411 Skin Corr. 1B
N,N-Diethyl-p-toluidine	210-345-0	0,1-< 1 %	H314 Acute Tox. 3; Oral
613-48-9	210 313 0	0,1 \ 1 /0	H301 Acute Tox. 3; Dermal
			H311 Acute Tox. 3; Inhalation H331
			STOT RE 2 H373
			Aquatic Chronic 3 H412
N,N-dimethyl-o-toluidine 609-72-3	210-199-8	0,1-< 1 %	Acute Tox. 3; Inhalation H331 Acute Tox. 3; Dermal
			H311 Acute Tox. 3; Oral
			H301 STOT RE 2 H373
			Aquatic Chronic 3 H412
methyl methacrylate 80-62-6	201-297-1 01-2119452498-28	0,1-< 1 %	Flam. Liq. 2 H225
			STOT SE 3 H335 Skin Irrit. 2
			H315 Skin Sens. 1
1,4-Naphthalenedione 130-15-4	204-977-6	0,01-< 0,1 %	H317 Acute Tox. 3; Oral
130-13-4			H301 Skin Irrit. 2; Dermal H315
			Skin Sens. 1 H317
			Eye Irrit. 2 H319
			Acute Tox. 1; Inhalation H330 STOT SE 3; Inhalation
			H335 Aquatic Acute 1
			H400 Aquatic Chronic 1
			H410 M factor (Acute Aquat Tox): 10 M factor (Chron Aquat Tox): 10

For full text of the H - statements and other abbreviations see section 16 "Other information". Substances without classification may have community workplace exposure limits available.

SECTION 4: First aid measures

Inhalation:

Move to fresh air. If symptoms persist, seek medical advice.

Skin contact:

Rinse with running water and soap.

Obtain medical attention if irritation persists.

Eve contact:

Rinse immediately with plenty of running water (for 10 minutes), seek medical attention from a specialist.

Ingestion:

Rinse mouth, drink 1-2 glasses of water, do not induce vomiting, consult a doctor.

4.2. Most important symptoms and effects, both acute and delayed

EYE: Irritation, conjunctivitis.

Prolonged or repeated contact may cause skin irritation.

RESPIRATORY: Irritation, coughing, shortness of breath, chest tightness.

4.3. Indication of any immediate medical attention and special treatment needed

See section: Description of first aid measures

SECTION 5: Firefighting measures

5.1. Extinguishing media

Suitable extinguishing media:

Carbon dioxide, foam, powder

Extinguishing media which must not be used for safety reasons:

None known

5.2. Special hazards arising from the substance or mixture

In the event of a fire, carbon monoxide (CO) and carbon dioxide (CO2) can be released.

5.3. Advice for firefighters

Wear self-contained breathing apparatus and full protective clothing, such as turn-out gear.

Additional information:

In case of fire, keep containers cool with water spray.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Ensure adequate ventilation.

Avoid contact with skin and eyes.

Wear protective equipment.

6.2. Environmental precautions

Do not empty into drains / surface water / ground water.

6.3. Methods and material for containment and cleaning up

For small spills wipe up with paper towel and place in container for disposal.

For large spills absorb onto inert absorbent material and place in sealed container for disposal.

Dispose of contaminated material as waste according to Section 13.

6.4. Reference to other sections

See advice in section 8

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Use only in well-ventilated areas.

Prolonged or repeated skin contact should be avoided to minimise any risk of sensitisation.

Avoid skin and eye contact.

See advice in section 8

Hygiene measures:

Good industrial hygiene practices should be observed.

Wash hands before work breaks and after finishing work.

Do not eat, drink or smoke while working.

7.2. Conditions for safe storage, including any incompatibilities

Ensure good ventilation/extraction.

Refer to Technical Data Sheet

7.3. Specific end use(s)

Threadlocker

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational Exposure Limits

Valid for

Great Britain

Ingredient [Regulated substance]	ppm	mg/m ³	Value type	Short term exposure limit category / Remarks	Regulatory list
Methyl methacrylate 80-62-6 [METHYL METHACRYLATE]	100	416	Short Term Exposure Limit (STEL):		EH40 WEL
Methyl methacrylate 80-62-6 [METHYL METHACRYLATE]	50	208	Time Weighted Average (TWA):		EH40 WEL
Methyl methacrylate 80-62-6 [METHYL METHACRYLATE]	100		Short Term Exposure Limit (STEL):	Indicative	ECTLV
Methyl methacrylate 80-62-6 [METHYL METHACRYLATE]	50		Time Weighted Average (TWA):	Indicative	ECTLV

Occupational Exposure Limits

Valid for

Ireland

Ingredient [Regulated substance]	ppm	mg/m³	Value type	Short term exposure limit category / Remarks	Regulatory list
Methyl methacrylate 80-62-6 [METHYL METHACRYLATE]	50		Time Weighted Average (TWA):	Indicative OELV	IR_OEL
Methyl methacrylate 80-62-6 [METHYL METHACRYLATE]	100		Short Term Exposure Limit (STEL):	Indicative	ECTLV
Methyl methacrylate 80-62-6 [METHYL METHACRYLATE]	50		Time Weighted Average (TWA):	Indicative	ECTLV
Methyl methacrylate 80-62-6 [METHYL METHACRYLATE]	100		Short Term Exposure Limit (STEL):	15 minutes Indicative OELV	IR_OEL

$\label{eq:predicted} \textbf{Predicted No-Effect Concentration (PNEC):}$

		Value				Remarks
•	•	mg/l	ppm	mg/kg	others	
aqua		0,0031				
(freshwater)		mg/l				
A '						
water)		mg/l				
aqua		0,031 mg/l				
,						
		0,35 mg/l				
treatment plant						
(freshwater)				mg/kg		
(marine water)				mg/kg		
Soil				- /		
				mg/kg		
		0.04 /1			+	
		0,94 mg/I				
		0.04 /1			+	
A '		0,94 mg/I				
		0.04 /1				
		0,94 mg/I				
		10 mg/l				
		10 Hig/I				
· /		+		5.74 mg/kg		
				3,74 mg/kg	,	
		+		1.47 mg/kg	,	
3011				1,47 mg/kg	·	
	aqua (freshwater) aqua (marine water)	aqua (freshwater) aqua (marine water) aqua (intermittent releases) Sewage treatment plant sediment (freshwater) Soil aqua (freshwater) aqua (marine water) aqua (marine water) aqua (intermittent releases) sewage treatment plant (STP) sediment (freshwater)	Compartment period aqua (freshwater) aqua (marine water) aqua (marine water) aqua (intermittent releases) Sewage treatment plant sediment (freshwater) Soil aqua (marine water) Soil aqua (freshwater) aqua (marine water) aqua (intermittent releases) Sewage treatment plant aqua (freshwater) aqua (intermittent releases) sewage treatment plant (STP) sediment (freshwater)	Compartment period aqua (freshwater) aqua (marine water) aqua (marine water) aqua (intermittent releases) Sewage treatment plant sediment (freshwater) Soil aqua (marine water) Soil aqua (freshwater) aqua (marine water) aqua (marine water) aqua (intermittent releases) Sewage treatment plant aqua (freshwater) aqua (intermittent releases) sewage treatment plant (STP) sediment (freshwater)	Compartment period mg/l ppm mg/kg	Compartment period mg/l ppm mg/kg others

Derived No-Effect Level (DNEL):

Name on list	Application Area	Route of Exposure	Health Effect	Exposure Time	Value	Remarks
.alpha.,.alphaDimethylbenzyl hydroperoxide 80-15-9	Workers	inhalation	Long term exposure - systemic effects		6 mg/m3	
methyl methacrylate 80-62-6	Workers	dermal	Acute/short term exposure - local effects		1,5 mg/cm2	
methyl methacrylate 80-62-6	Workers	dermal	Long term exposure - systemic effects		13,67 mg/kg	
methyl methacrylate 80-62-6	Workers	Inhalation	Long term exposure - systemic effects		208 mg/m3	
methyl methacrylate 80-62-6	Workers	dermal	Long term exposure - local effects		1,5 mg/cm2	
methyl methacrylate 80-62-6	Workers	Inhalation	Long term exposure - local effects		208 mg/m3	
methyl methacrylate 80-62-6	General population	dermal	Acute/short term exposure - local effects		1,5 mg/cm2	
methyl methacrylate 80-62-6	General population	dermal	Long term exposure - systemic effects		8,2 mg/kg	
methyl methacrylate 80-62-6	General population	Inhalation	Long term exposure - systemic effects		74,3 mg/m3	
methyl methacrylate 80-62-6	General population	dermal	Long term exposure - local effects		1,5 mg/cm2	
methyl methacrylate 80-62-6	General population	Inhalation	Long term exposure - local effects		104 mg/m3	

Biological Exposure Indices:

None

8.2. Exposure controls:

Engineering controls:

Ensure good ventilation/extraction.

Respiratory protection:

Ensure adequate ventilation.

An approved mask or respirator fitted with an organic vapour cartridge should be worn if the product is used in a poorly ventilated area

Filter type: A (EN 14387)

Hand protection:

Chemical-resistant protective gloves (EN 374).

Suitable materials for short-term contact or splashes (recommended: at least protection index 2, corresponding to > 30 minutes permeation time as per EN 374):

nitrile rubber (NBR; >= 0.4 mm thickness)

Suitable materials for longer, direct contact (recommended: protection index 6, corresponding to > 480 minutes permeation time as per EN 374):

nitrile rubber (NBR; >= 0.4 mm thickness)

This information is based on literature references and on information provided by glove manufacturers, or is derived by analogy with similar substances. Please note that in practice the working life of chemical-resistant protective gloves may be considerably shorter than the permeation time determined in accordance with EN 374 as a result of the many influencing factors (e.g. temperature). If signs of wear and tear are noticed then the gloves should be replaced.

Eye protection:

Safety glasses with sideshields or chemical safety goggles should be worn if there is a risk of splashing.

Protective eye equipment should conform to EN166.

Skin protection:

Wear suitable protective clothing.

Protective clothing should conform to EN 14605 for liquid splashes or to EN 13982 for dusts.

Advices to personal protection equipment:

The information provided on personal protective equipment is for guidance purposes only. A full risk assessment should be conducted prior to using this product to determine the appropriate personal protective equipment to suit local conditions. Personal protective equipment should conform to the relevant EN standard.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance green Odor mild

Odour threshold No data available / Not applicable

pΗ Not applicable

Melting point No data available / Not applicable Solidification temperature No data available / Not applicable

Initial boiling point $> 150 \, ^{\circ}\text{C} \, (> 302 \, ^{\circ}\text{F})$

> 93,3 °C (> 199.94 °F); Tagliabue closed cup Flash point

Evaporation rate Not available.

Flammability No data available / Not applicable Explosive limits No data available / Not applicable

Vapour pressure < 5 mm hg

(27 °C (80.6 °F))

Vapour pressure < 300 mbar

(50 °C (122 °F))

Relative vapour density: Not available. Density 1,07 g/cm3

()

Bulk density No data available / Not applicable Solubility No data available / Not applicable Slight

Solubility (qualitative)

(Solvent: Water)

Solubility (qualitative) Miscible

(Solvent: Acetone)

Partition coefficient: n-octanol/water No data available / Not applicable Auto-ignition temperature No data available / Not applicable No data available / Not applicable Decomposition temperature No data available / Not applicable Viscosity Viscosity (kinematic) No data available / Not applicable No data available / Not applicable Explosive properties Oxidising properties No data available / Not applicable

9.2. Other information

No data available / Not applicable

SECTION 10: Stability and reactivity

10.1. Reactivity

Reaction with strong acids. Reacts with strong oxidants.

10.2. Chemical stability

Stable under recommended storage conditions.

10.3. Possibility of hazardous reactions

See section reactivity

10.4. Conditions to avoid

No decomposition if used according to specifications.

10.5. Incompatible materials

See section reactivity.

10.6. Hazardous decomposition products

Irritating organic vapours.

SECTION 11: Toxicological information

General toxicological information:

Prolonged or repeated contact may cause skin irritation.

11.1. Information on toxicological effects

Acute oral toxicity:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Value type	Value	Species	Method
Cumene hydroperoxide 80-15-9	LD50	382 mg/kg	rat	other guideline:
methyl methacrylate 80-62-6	LD50	9.400 mg/kg	rat	not specified
1,4-Naphthalenedione 130-15-4	LD50	190 mg/kg	rat	not specified

Acute dermal toxicity:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Species	Method
CAS-No.	type			
Cumene hydroperoxide	LD50	530 - 1.060	rat	other guideline:
80-15-9		mg/kg		
Cumene hydroperoxide	Acute	1.100 mg/kg		Expert judgement
80-15-9	toxicity			
	estimate			
	(ATE)			
methyl methacrylate	LD50	> 5.000 mg/kg	rabbit	not specified
80-62-6				_

Acute inhalative toxicity:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Value type	Value	Test atmosphere	Exposure time	Species	Method
methyl methacrylate	LC50	29,8 mg/l	vapour	4 h	rat	not specified
80-62-6						

Skin corrosion/irritation:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result	Exposure time	Species	Method
Cumene hydroperoxide 80-15-9	corrosive		rabbit	Draize Test

Serious eye damage/irritation:

No data available.

Respiratory or skin sensitization:

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

	Hazardous substances	Result	Test type	Species	Method
	CAS-No.				
ĺ	methyl methacrylate	sensitising	Mouse local lymphnode	mouse	OECD Guideline 429 (Skin Sensitisation:
	80-62-6		assay (LLNA)		Local Lymph Node Assay)

Germ cell mutagenicity:

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result	Type of study / Route of administration	Metabolic activation / Exposure time	Species	Method
Cumene hydroperoxide 80-15-9	positive	bacterial reverse mutation assay (e.g Ames test)	without		OECD Guideline 471 (Bacterial Reverse Mutation Assay)
methyl methacrylate 80-62-6	negative	bacterial reverse mutation assay (e.g Ames test)	with and without		not specified

Carcinogenicity

No data available.

Reproductive toxicity:

No data available.

STOT-single exposure:

No data available.

STOT-repeated exposure::

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances	Result / Value	Route of	Exposure time /	Species	Method
CAS-No.		application	Frequency of		
			treatment		
Cumene hydroperoxide		inhalation:	6 h/d	rat	not specified
80-15-9		aerosol	5 d/w		
methyl methacrylate	LOAEL 2000 ppm	inhalation	14 weeks	mouse	Dose Range Finding
80-62-6			6 hrs/day, 5 days/wk		Study
methyl methacrylate	NOAEL 1000 ppm	inhalation	14 weeks	mouse	Dose Range Finding
80-62-6			6 hrs/day, 5 days/wk		Study

Aspiration hazard:

No data available.

SECTION 12: Ecological information

General ecological information:

Cured Loctite products are typical polymers and do not pose any immediate environmental hazards. Do not empty into drains / surface water / ground water.

12.1. Toxicity

Toxicity (Fish):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
Cumene hydroperoxide	LC50	3,9 mg/l	96 h	Oncorhynchus mykiss	OECD Guideline 203 (Fish,
80-15-9					Acute Toxicity Test)
N,N-dimethyl-o-toluidine	LC 50	46 mg/l	96 h	Fathead minnow (Pimephales	
609-72-3				promelas)	
methyl methacrylate	LC50	350 mg/l	96 h	Leuciscus idus	OECD Guideline 203 (Fish,
80-62-6					Acute Toxicity Test)

Toxicity (Daphnia):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
Cumene hydroperoxide	EC50	18 mg/l	48 h	Daphnia magna	OECD Guideline 202
80-15-9					(Daphnia sp. Acute
					Immobilisation Test)
methyl methacrylate	EC50	69 mg/l	48 h	Daphnia magna	EPA OTS 797.1300
80-62-6					(Aquatic Invertebrate Acute
					Toxicity Test, Freshwater
					Daphnids)

Chronic toxicity to aquatic invertebrates

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Value type	Value	Exposure time	Species	Method
methyl methacrylate	NOEC	37 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia
80-62-6					magna, Reproduction Test)

Toxicity (Algae):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Value type	Value	Exposure time	Species	Method
Cumene hydroperoxide 80-15-9	ErC50	3,1 mg/l	72 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Algae Growth Inhibition Test)
methyl methacrylate 80-62-6	EC50	170 mg/l	96 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga, Growth Inhibition Test)
methyl methacrylate 80-62-6	NOEC	100 mg/l	96 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Algae Growth Inhibition Test)
1,4-Naphthalenedione 130-15-4	EC50	0,011 mg/l	72 h	Dunaliella bioculata	OECD Guideline 201 (Alga Growth Inhibition Test)

Toxicity to microorganisms

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
Cumene hydroperoxide	EC10	70 mg/l	30 min		not specified
80-15-9					
methyl methacrylate	EC20	> 150 - 200 mg/l	30 min	activated sludge, domestic	ISO 8192 (Test for
80-62-6					Inhibition of Oxygen
					Consumption by Activated
					Sludge)

12.2. Persistence and degradability

The product is not biodegradable.

Hazardous substances	Result	Test type	Degradability	Exposure	Method
CAS-No.				time	
Cumene hydroperoxide		no data	0 %	28 d	OECD Guideline 301 B (Ready
80-15-9					Biodegradability: CO2 Evolution
					Test)
methyl methacrylate	readily biodegradable	aerobic	94 %	14 d	OECD Guideline 301 C (Ready
80-62-6					Biodegradability: Modified MITI
					Test (I))
1,4-Naphthalenedione	not readily biodegradable.	no data	0 - 60 %		OECD 301 A - F
130-15-4					

12.3. Bioaccumulative potential

Hazardous substances	Bioconcentratio	Exposure time	Temperature	Species	Method
CAS-No.	n factor (BCF)				
Cumene hydroperoxide	9,1			calculation	OECD Guideline 305
80-15-9					(Bioconcentration: Flow-through
					Fish Test)

12.4. Mobility in soil

Cured adhesives are immobile.

Hazardous substances	LogPow	Temperature	Method
CAS-No.			
Cumene hydroperoxide	2,16		not specified
80-15-9			
methyl methacrylate	1,38	20 °C	other guideline:
80-62-6			
1,4-Naphthalenedione	1,71		not specified
130-15-4			

12.5. Results of PBT and vPvB assessment

Hazardous substances	PBT / vPvB
CAS-No.	
Cumene hydroperoxide	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very
80-15-9	Bioaccumulative (vPvB) criteria.
methyl methacrylate	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very
80-62-6	Bioaccumulative (vPvB) criteria.
1,4-Naphthalenedione	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very
130-15-4	Bioaccumulative (vPvB) criteria.

12.6. Other adverse effects

No data available.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

Product disposal:

Dispose of in accordance with local and national regulations.

Do not empty into drains / surface water / ground water.

Disposal of uncleaned packages:

After use, tubes, cartons and bottles containing residual product should be disposed of as chemically contaminated waste in an authorised legal land fill site or incinerated.

Waste code

08 04 09 waste adhesives and sealants containing organic solvents and other dangerous substances

The valid EWC waste code numbers are source-related. The manufacturer is therefore unable to specify EWC waste codes for the articles or products used in the various sectors. The EWC codes listed are intended as a recommendation for users. We will be happy to advise you.

SECTION 14: Transport information

14.1. UN number

ADR	Not dangerous goods
RID	Not dangerous goods
ADN	Not dangerous goods
IMDG	Not dangerous goods
IATA	Not dangerous goods

14.2. UN proper shipping name

ADR	Not dangerous goods
RID	Not dangerous goods
ADN	Not dangerous goods
IMDG	Not dangerous goods
IATA	Not dangerous goods

14.3. Transport hazard class(es)

ADR	Not dangerous goods
RID	Not dangerous goods
ADN	Not dangerous goods
IMDG	Not dangerous goods
IATA	Not dangerous goods

14.4. Packing group

ADR	Not dangerous goods
RID	Not dangerous goods
ADN	Not dangerous goods
IMDG	Not dangerous goods
IATA	Not dangerous goods

14.5. Environmental hazards

ADR	not applicable
RID	not applicable
ADN	not applicable
IMDG	not applicable
IATA	not applicable

14.6. Special precautions for user

ADR	not applicable
RID	not applicable
ADN	not applicable
IMDG	not applicable
IATA	not applicable

14.7. Transport in bulk according to Annex II of Marpol and the IBC Code

not applicable

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

< 3 %

VOC content (2010/75/EC)

710/73/EC)

15.2. Chemical safety assessment

A chemical safety assessment has not been carried out.

SECTION 16: Other information

The labelling of the product is indicated in Section 2. The full text of all abbreviations indicated by codes in this safety data sheet are as follows:

H225 Highly flammable liquid and vapor.

H242 Heating may cause a fire.

H301 Toxic if swallowed.

H302 Harmful if swallowed.

H311 Toxic in contact with skin.

H312 Harmful in contact with skin.

H314 Causes severe skin burns and eye damage.

H315 Causes skin irritation.

H317 May cause an allergic skin reaction.

H319 Causes serious eye irritation.

H330 Fatal if inhaled.

H331 Toxic if inhaled.

H335 May cause respiratory irritation.

H373 May cause damage to organs through prolonged or repeated exposure.

H400 Very toxic to aquatic life.

H410 Very toxic to aquatic life with long lasting effects.

H411 Toxic to aquatic life with long lasting effects.

H412 Harmful to aquatic life with long lasting effects.

Further information:

This Safety Data Sheet has been produced for sales from Henkel to parties purchasing from Henkel, is based on Regulation (EC) No 1907/2006 and provides information in accordance with applicable regulations of the European Union only. In that respect, no statement, warranty or representation of any kind is given as to compliance with any statutory laws or regulations of any other jurisdiction or territory other than the European Union. When exporting to territories other than the European Union, please consult with the respective Safety Data Sheet of the concerned territory to ensure compliance or liaise with Henkel's Product Safety and Regulatory Affairs Department (ua-productsafety.de@henkel.com) prior to export to other territories than the European Union.

This information is based on our current level of knowledge and relates to the product in the state in which it is delivered. It is intended to describe our products from the point of view of safety requirements and is not intended to guarantee any particular properties.

Dear Customer,

Henkel is committed to creating a sustainable future by promoting opportunities along the entire value chain. If you would like to contribute by switching from a paper to the electronic version of SDS, please contact the local Customer Service representative. We recommend to use a non-personal email address (e.g. SDS@your_company.com).

Relevant changes in this safety data sheet are indicated by vertical lines at the left margin in the body of this document. Corresponding text is displayed in a different color on shadowed fields.