Pickering Series 104

High Voltage SIL/SIP Reed Relays

Up to 3 kilovolts Stand-off

Stacking on 0.25 inches pitch

Products highlighted are available from Rapid Electronics www.rapidonline.com

Features

- Small size
- Internal mu-metal magnetic screen
- One or two switches in a single package
- Form A (energise to make) or Form B (energise to break) configurations
- Dry and mercury wetted switches available
- 3,5, 12 and 24 Volt coils with or without internal diode
- 100% tested for dynamic contact resistance for guaranteed performance

The Series 104 is a range of Single-In-Line reed relays intended for voltages that are beyond the capabilities of conventional SIL reed relays.
They are ideal for such applications as transformer or cable testing or any other automatic test equipment where high voltages are involved.
Where mains voltages are switched, for example to control and isolate S.C.R. or triac gates, they are an ideal choice.
One or two Form A (energize to make) or one Form B (energize to break) configurations are available.
The range features an internal mu-metal screen to eliminate problems that would otherwise be experienced due to magnetic interaction when they are closely stacked.
Three types of dry switches are available, capable of standing-off $1,1.5$ or 3 kV d.c. The 3 kV version has an increased clearance between the switch and coil pins to accommodate the higher voltage. Even higher voltage ratings are available to special order, please contact our sales office for further information.
Mercury wetted devices are also available for applications where bounce free switching is required. These are rated at 1500 volts d.c. stand-off, 500 volts d.c. switching at up to 50 watts.

1 Form A, 0.95 (24.1)
0.245 (6.3)

1 Form B, 1.14 (29.0)
2 Form A, 1.14 (29.0)

1 Form A, 0.32 (8.2) 1 Form B, 2 Form A, 0.49 (12.5) Inches (mm)
Pin 1

Switch Ratings - Dry switches

- 1 or 2 Form A (energize to make)

1000 Volts d.c. stand-off
500 Volts d.c. switching at 10 Watts

- 1 or 2 Form A (energize to make)

1500 Volts d.c. stand-off
1000 Volts d.c. switching at 10 Watts

- 1 Form A (energize to make)

3000 Volts d.c. stand-off
1000 Volts d.c. switching at 25 Watts

- 1 Form B (energize to break)

1000 Volts d.c. stand-off
500 Volts d.c. switching at 10 Watts

- 1 Form B (energize to break)

1500 Volts d.c. stand-off
1000 Volts d.c. switching at 10 Watts

Switch Ratings - Mercury switches

- 1 or 2 Form A (energize to make)

1500 Volts d.c. stand-off
500 Volts d.c. switching at 50 Watts

Series 104 switch ratings - The contact ratings for each switch type are shown below:

Switch No	Switch form	Power rating	Max. switch current	Max. carry current	Max. switching volts	Max. stand-off volts	Life expectancy ops typical (see Note ${ }^{1}$ below)	Operate time inc bounce (max)	Release time
1	A or B	10 W	0.50 A	1.0 A	500	1000	10^{8}	1.0 ms	0.3 ms
2	A or B	10 W	0.50 A	1.0 A	1000	1500	10^{8}	1.0 ms	0.3 ms
3	A	25 W	1.00 A	1.5 A	1000	3000	10^{8}	1.0 ms	0.3 ms

Coil data and type numbers

Device type	Type Number	Coil (V)	Coil resistance	Max. contact resistance (initial)	Insulation resistance (minimum)		Capacitance (typical) (see Note ${ }^{2}$ below)	
					Switch to coil	Across switch	Closed switch to coil	Across open switch
1 Form A (energize to make) Switch No. 1 (1kV)	$\begin{aligned} & 104-1-\mathrm{A}-5 / 1 \mathrm{D} \\ & 104-1-\mathrm{A}-12 / 1 \mathrm{D} \\ & 104-1-\mathrm{A}-24 / 1 \mathrm{D} \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	375Ω 1000Ω 3000Ω	0.15Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
1 Form A (energize to make) Switch No. 2 (1.5kV)	$\begin{aligned} & 104-1-A-5 / 2 D \\ & 104-1-A-12 / 2 D \\ & 104-1-A-24 / 2 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	375Ω 1000Ω 3000Ω	0.15Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
1 Form A (energize to make) Switch No. 3 (3.0kV)	$\begin{aligned} & 104-1-A-5 / 3 D \\ & 104-1-A-12 / 3 D \\ & 104-1-A-24 / 3 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} 220 \Omega \\ 500 \Omega \\ 3000 \Omega \end{gathered}$	0.15Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
1 Form B (energize to break) Switch No. 1 (1 kV)	$\begin{aligned} & 104-1-B-5 / 1 D \\ & 104-1-B-12 / 1 D \\ & 104-1-B-24 / 1 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	750Ω 2000Ω 3000Ω	0.20Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
1 Form B (energize to break) Switch No. 2 (1.5kV)	$\begin{aligned} & 104-1-B-5 / 2 D \\ & 104-1-B-12 / 2 D \\ & 104-1-B-24 / 2 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	750Ω 2000Ω 3000Ω	0.20Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
2 Form A (energize to make) Switch No. 1 (1kV)	$\begin{aligned} & 104-2-A-5 / 1 D \\ & 104-2-A-12 / 1 D \\ & 104-2-A-24 / 1 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} 250 \Omega \\ 750 \Omega \\ 2000 \Omega \end{gathered}$	0.20Ω	$10^{12} \Omega$	$10^{12} \Omega$	$\begin{gathered} \text { See } \\ \text { Note }^{3} \end{gathered}$	$\begin{aligned} & \text { See } \\ & \text { Note }^{3} \end{aligned}$
2 Form A (energize to make) Switch No. 2 (1.5kV)	$\begin{aligned} & 104-2-A-5 / 2 D \\ & 104-2-A-12 / 2 D \\ & 104-2-A-24 / 2 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} 250 \Omega \\ 750 \Omega \\ 2000 \Omega \end{gathered}$	0.20Ω	$10^{12} \Omega$	$10^{12} \Omega$	See Note ${ }^{3}$	See Note ${ }^{3}$

When an internal diode is required, the suffix D is added to the part number as shown in the table.
Mercury Reed: Series 104 switch ratings -The contact raings for each switch type re shown below:

Switch No	Switch form	Power rating	Max. switch current	Max. carry current	Max. switching volts	Max. stand-off volts	Life expectancy ops typical (see Note ${ }^{1}$ below)	Operate time (max)	Release time
6	A	50 W	2.00 A	3.00 A	500	1500	10^{8}	1.5 ms	1.0 ms

Mercury Relay: Coil data and type numbers

Device type	Type Number	Coil (V)	Coil resistance	```Max. contact resistance (initial)```	Insulation resistance (minimum)		Capacitance (typical) (see Note ${ }^{2}$ below)	
					Switch to coil	Across switch	Closed switch to coil	Across open switch
1 Form A (energize to make) Switch No. 6 (1.5kV)	$\begin{aligned} & 104-1-A-5 / 6 D \\ & 104-1-A-12 / 6 D \\ & 104-1-A-24 / 6 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} 100 \Omega \\ 500 \Omega \\ 1500 \Omega \end{gathered}$	0.12Ω	$10^{12} \Omega$	$10^{11} \Omega$	3 pF	0.1 pF
2 Form A (energize to make) Switch No. 6 (1.5KV)	$\begin{aligned} & 104-2-A-5 / 6 \mathrm{D} \\ & 104-2-\mathrm{A}-12 / 6 \mathrm{D} \\ & 104-2-\mathrm{A}-24 / 6 \mathrm{D} \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} 50 \Omega \\ 275 \Omega \\ 1000 \Omega \end{gathered}$	0.15Ω	$10^{12} \Omega$	$10^{11} \Omega$	See $\text { Note }^{3}$	$\begin{aligned} & \text { See } \\ & \text { Note }^{3} \end{aligned}$

When an internal diode is required, the suffix D is added to the part number as shown in the table.

Note ${ }^{1}$ Life expectancy

The life of a reed relay depends upon the switch load and end of life criteria. For example, for an 'end of life' contact resistance specification of 1Ω, switching low loads (10 V at 10 mA resistive) or when 'cold' switching, typical life is approx $1 \times 10^{8} \mathrm{ops}$. At the maximum load (resistive), typical life is 1×10^{7} ops. In the event of abusive conditions, e.g. high currents due to capacitive inrushes, this figure reduces considerably. Pickering will be pleased to perform life testing with any particular load condition.

Note ${ }^{2}$ Capacitance across open switch

The capacitance across the open switch was measured with other connections guarded

Note ${ }^{3}$ Capacitance values

The value will depend upon on the mode of connection/guarding of unused terminals. Please contact technical sales for details.

Mercury Relays

Mercury relays should be mounted vertically with pin 1 uppermost. Pin 1 is marked with a bar on the top face of the relay.

Internal Mu-metal Magnetic Screen

The Series 104 relays are fitted with an internal mu-metal magnetic screen which permits side-by-side stacking.

Main contact:

UK Headquarters: email: sales@pickeringrelay.com | Tel. +44 1255428141 Worldwide contacts:
USA: email: ussales@pickeringtest.com | Tel. +1 7818971710
Germany: email: desales@pickeringtest.com | Tel. +4989125953160
China: email: johnson@tomtech.cn | Tel. 075583745452
For a full list of agents and representatives visit: pickeringrelay.com/agents
 Reed Relays FM 29036

Pin Configuration and Dimensional Data
Dimensions in Inches (Millimeters in brackets)

1 Form A (Energize to make)
Switch No. 1 (1 kV stand-off) Switch No. 2 (1.5 kV stand-off) Switch No. 6 (Mercury Wetted)

Important: Where the optional internal diode is fitted or for all Form B types, the correct coil polarity must be observed, as shown by the + symbol on the schematics.

3D Models: Interactive models of the complete range of

 Pickering relay products can be downloaded from the web site.
Order Code

104-1-A-5 / 2 D
Series
Number of reeds
Switch form
Coil voltage
Switch number (See table adjacent)
Diode if fitted (Omit if not required)

Help

If you need any technical advice or other help, for example, any special tests that you would like carried out, please do not hesitate to contact our Technical Sales Department. We will always be pleased to discuss Pickering relays with you. email: techsales@pickeringrelay.com
Please ask us for a FREE evaluation sample.

