Pickering Series 107

Mini-SIL ${ }^{\oplus}$ SIL/SIP Reed Relays

Up to 20 Watts switching

Stacking on 0.2 inches pitch

Products highlighted are available from Rapid Electronics www.rapidonline.com

Features

- SoftCenter ${ }^{\circledR}$ construction (see adjacent diagram)
- Highest quality instrumentation grade switches
- Encapsulated in patented mu-metal can
- Insulation resistance greater than $10^{12} \Omega$ for Form A devices
- Dry and mercury wetted switches available
- Wide range of switch configurations - 1 Form A, 1 Form B, 2 Form A, 1 Form C, and 2 Form C, see adjacent column
- For R.F. or high speed digital applications, $\mathbf{5 0}$ ohms coaxial devices are available in the same package style, see Series 102M
- 3,5,12 or 24 Volt coils with or without internal diode
- 100% tested for dynamic contact resistance for guaranteed performance

The Series 107 Mini-SIL range of reed relays are intended for stacking on 0.2 inches (5.08 mm) pitch. Their small size, superb contact resistance stability and ultra high insulation resistance, make these relays an ideal choice for high quality instrumentation.
The mu-metal case ensures virtually total magnetic screening, see explanation below.
Both dry and mercury wetted switches are available in a wide range of configurations, see adjacent column.
If even greater packing density is required, smaller devices are available in other Pickering SIL ranges (except for two pole changeover types).

Magnetic Interaction - An explanation

Magnetic interaction between relays is normally expressed as a percentage increase in the voltage required to operate the relay, due to the extraneous fields from adjacent relay coils.
An unscreened SIL relay of this size would have an interaction figure of around 30 percent, i.e. the voltage required to operate it will increase by this amount when relays alongside are operated also. It may prove impossible to use such a relay at its nominal coil voltage in high density applications.
A Pickering Series 107 reed relay has an interaction figure of approximately 1 percent.

Switch Ratings - Dry switches

- Single or Double pole Form A (Energize to Make) relays. Up to 1 Amp switching at 20 Watts
- Single pole Form B (Energize to Break) relays. Up to 1 Amp switching at 20 Watts
- Single or Double pole Form C (Change-over) relays. 0.25 Amps switching at 3 Watts

Switch Ratings - Mercury Wetted Switches

- Single or Double pole Form A (Energize to Make) relays. 2 Amp switching at 50 Watts
- Single pole, Non Position Sensitive, Form A (Energize to Make) relays. 2 Amp switching at 50 Watts

Typical Pickering SoftCenter ${ }^{\circledR}$ Construction

Series 107 switch ratings - The contact ratings for each switch type are shown below:

Switch No	Switch form	Power rating	Max. switch current	Max. carry current	Max. switching volts	Life expectancy ops typical (see Note ${ }^{1}$ below)	Operate time inc bounce (max)	Release time	Special features
1	A or B	$15 \mathrm{~W}(5 \mathrm{~V}$ Versions) $20 \mathrm{~W}(12 ~ \& ~ 24 ~ V) ~$	1.0 A	1.2 A	200	10^{9}	0.5 ms	0.2 ms	General purpose
2	A	10 W	0.5 A	1.2 A	200	10^{9}	0.5 ms	0.2 ms	Low level
3	C	3 W	0.25 A	1.2 A	200	10^{7}	1.0 ms	0.5 ms	Change over
4	A	10 W	0.5 A	1.2 A	400	10^{7}	0.75 ms	0.25 ms	500 C stand-off

Switch no. 2 is particularly good for switching low currents and/or voltages. Itis the ideal switch forA.T.E. systems where cold switching techniques are often used. Where higher power levels are involved, switch no. 1 is more suitable.
Coil data and type numbers

Device type	Type Number	Coil (V)	Coil resistance	Max. contact resistance (initial)	Insulation resistance (minimum)		Capacitance (typical) (see Note ${ }^{2}$ below)	
					Switch to coil	Across switch	Closed switch to coil	Across open switch
1 Form A (energize to make) General Purpose Switch No. 1	$\begin{aligned} & 107-1-\mathrm{A}-5 / 1 \mathrm{D} \\ & 107-1-\mathrm{A}-12 / 1 \mathrm{D} \\ & 107-1-\mathrm{A}-24 / 1 \mathrm{D} \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	500Ω 1000Ω 3000Ω	0.15Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.2 pF
1 Form A (energize to make) Low Level Switch No. 2	$\begin{aligned} & 107-1-A-3 / 2 D \\ & 107-1-A-5 / 2 D \\ & 107-1-A-12 / 2 D \\ & 107-1-A-24 / 2 D \end{aligned}$	$\begin{gathered} 3 \\ 5 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} 500 \Omega \\ 500 \Omega \\ 1000 \Omega \\ 3000 \Omega \end{gathered}$	0.12Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.2 pF
1 Form A (energize to make) High Voltage Switch No. 4	$\begin{aligned} & 107-1-A-5 / 4 D \\ & 107-1-A-12 / 4 D \\ & 107-1-A-24 / 4 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	500Ω 1000Ω 3000Ω	0.15Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.2 pF
1 Form C (change-over) Switch No. 3	$\begin{aligned} & 107-1-C-5 / 3 D \\ & 107-1-C-12 / 3 D \\ & 107-1-C-24 / 3 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	500Ω 1000Ω 3000Ω	0.20Ω	$10^{12} \Omega$	$10^{10} \Omega$	See Note ${ }^{3}$	$\begin{aligned} & \text { See } \\ & \text { Note }^{3} \end{aligned}$
1 Form B (energize to break) General Purpose Switch No. 1	$\begin{aligned} & 107-1-B-5 / 1 \mathrm{D} \\ & 107-1-\mathrm{B}-12 / 1 \mathrm{D} \\ & 107-1-\mathrm{B}-24 / 1 \mathrm{D} \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	$\begin{aligned} & 1000 \Omega \\ & 3000 \Omega \\ & 3000 \Omega \end{aligned}$	0.15Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.2 pF
2 Form A (energize to make) General Purpose Switch No. 1	$\begin{aligned} & 107-2-A-5 / 1 D \\ & 107-2-A-12 / 1 D \\ & 107-2-A-24 / 1 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	500Ω 1000Ω 3000Ω	0.17Ω	$10^{12} \Omega$	$10^{12} \Omega$	See Note ${ }^{3}$	See Note ${ }^{3}$
2 Form A (energize to make) Low Level Switch No. 2	$\begin{aligned} & 107-2-A-5 / 2 D \\ & 107-2-A-12 / 2 D \\ & 107-2-A-24 / 2 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	500Ω 1000Ω 3000Ω	0.15Ω	$10^{12} \Omega$	$10^{12} \Omega$	See Note ${ }^{3}$	$\begin{gathered} \text { See } \\ \text { Note }^{3} \end{gathered}$
2 Form C (change-over) Switch No. 3	$\begin{aligned} & 107-2-C-3 / 3 D \\ & 107-2-C-5 / 3 D \\ & 107-2-C-12 / 3 D \\ & 107-2-C-24 / 3 D \end{aligned}$	$\begin{gathered} 3 \\ 5 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} 200 \Omega \\ 375 \Omega \\ 1000 \Omega \\ 2700 \Omega \end{gathered}$	0.22Ω	$10^{12} \Omega$	$10^{12} \Omega$	See Note ${ }^{3}$	See Note ${ }^{3}$

When an internal diode is required, the suffix D is added to the partnumber as shown in the table.
Mercury Reed: Series 107 switch ratings - The contactratings for each switch ype are shown below:

Switch No	Switch form	Power rating	Max. switch current	Max. carry current	Max. switching volts	Life expectancy ops typical (see Note ${ }^{1}$ below)	Operate time (max)	Release time	Special features
6	A	50 W	2 A	3 A	500	10^{8}	2.0 ms	1.25 ms	Standard Mercury
8	A	50 W	2 A	2 A	350	10^{8}	2.0 ms	1.25 ms	Position Insensitive

Mercury Relay: Coil data and type numbers

Device type	Type Number	Coil (V)	Coil resistance	Max. contact resistance (initial)	Insulation resistance (minimum)		Capacitance (typical) (see Note ${ }^{2}$ below)	
					Switch to coil	Across switch	Closed switch to coil	Across open switch
1 Form A (energize to make) Switch No. 6	$\begin{aligned} & 107-1-\mathrm{A}-5 / 6 \mathrm{D} \\ & 107-1-\mathrm{A}-12 / 6 \mathrm{D} \\ & 107-1-\mathrm{A}-24 / 6 \mathrm{D} \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} 140 \Omega \\ 500 \Omega \\ 1500 \Omega \end{gathered}$	0.075Ω	$10^{12} \Omega$	$10^{11} \Omega$	5 pF	0.1 pF
1 Form A (energize to make) Position Insensitive Switch No. 8	$\begin{aligned} & 107-1-A-5 / 8 \mathrm{D} \\ & 107-1-\mathrm{A}-12 / 8 \mathrm{D} \\ & 107-1-\mathrm{A}-24 / 8 \mathrm{D} \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} 140 \Omega \\ 500 \Omega \\ 1500 \Omega \end{gathered}$	0.100Ω	$10^{12} \Omega$	$10^{11} \Omega$	5 pF	0.1 pF
2 Form A (energize to make) Switch No. 6	$\begin{aligned} & 107-2-A-5 / 6 D \\ & 107-2-A-12 / 6 D \\ & 107-2-A-24 / 6 D \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} 100 \Omega \\ 375 \Omega \\ 1000 \Omega \end{gathered}$	0.100Ω	$10^{12} \Omega$	$10^{11} \Omega$	See Note ${ }^{3}$	See Note ${ }^{3}$

When an internal diode is required, the suffix D is added to the partnumber as shown in the table.
Note ${ }^{1}$ Life expectancy
The life of a reed relay depends upon the switch load and end of life criteria. For example, for an 'end of life' contact resistance specification of 1Ω, switching low loads (10 V at 10 mA resistive) or when 'cold' switching, typical life is approx $1 \times 10^{9} \mathrm{ops}$. At the maximum load (resistive), typical life is 1×10^{7} ops. In the event of abusive conditions, e.g. high currents due to capacitive inrushes, this figure reduces considerably. Pickering will be pleased to perform life testing with any particular load condition.
Note ${ }^{2}$ Capacitance across open switch
The capacitance across the open switch was measured with other connections guarded.
Note ${ }^{3}$ Capacitance values
The value will depend upon on the mode of connection/guarding of unused terminals. Please contact technical sales for details.

Main contact:

UK Headquarters: email: sales@pickeringrelay.com | Tel. +44 1255428141

Worldwide contacts:

USA: email: ussales@pickeringtest.com | Tel. +1 7818971710
Germany: email: desales@pickeringtest.com | Tel. +49 89125953160
China: email: johnson@tomtech.cn | Tel. 075583745452
For a full list of agents and representatives visit: pickeringrelay.com/agents

Pin Configuration and Dimensional Data
Dimensions in Inches (Millimeters in brackets)

Important: Where the optional internal diode is fitted or for all Form B types, the correct coil polarity must be observed, as shown by the + symbol on the schematics.

3D Models: Interactive models of the complete range of

 Pickering relay products can be downloaded from the web site.
Mercury Relays

With the exception of the position insensitive type, mercury relays should be mounted vertically with pin 1 uppermost.

Order Code
107-1-A-5/2D

Series
Number of reeds
Switch form
Coil voltage
Switch number (See table adjacent)
Diode if fitted (Omit if not required)

Help

If you need any technical advice or other help, for example, any special tests that you would like carried out, please do not hesitate to contact our Technical Sales Department. We will always be pleased to discuss Pickering relays with you. email: techsales@pickeringrelay.com

Please ask us for a FREE evaluation sample.

