

Table of Contents
Preface

1 Getting Started

2 Connecting to Robot

3 Main Interface

3.1 Overview

3.2 Top toolbar

3.3 3D model panel

3.4 Major function panel

3.5 Jog board

4 Setting

4.1 Tool coordinate system

4.2 User coordinate system

4.3 Jog setting

4.4 Playback setting

4.5 Safety setting

4.5.1 Safe collision

4.5.2 Joint brake

4.5.3 Terminal load

4.5.4 Drag sensitivity

4.5.5 Advanced function

4.6 Remote control

4.7 Robot posture

4.8 Installation

4.9 Software setting

4.10 Manufactory

4.11 Power voltage (CCBOX)

5 Monitoring

5.1 IO monitor

5.2 Modbus

5.3 Global variable

5.4 Robot state

2

5.5 Run log

5.6 Dobot+

6 Programming

6.1 Blockly

6.2 Script

7 Process

7.1 Trajectory playback

7.2 Conveyor belt

8 Best Practice

Appendix A Modbus Register Definition

Appendix B Blockly Commands

B.1 Quick start

B.1.1 Control robot movement

B.1.2 Read and write Modbus register data

B.1.3 Transmit data by TCP communication

B.1.4 Palletize

B.2 Block description

B.2.1 Event

B.2.2 Control

B.2.3 Operator

B.2.4 String

B.2.5 Custom

B.2.6 IO

B.2.7 Motion

B.2.8 Motion advanced configuration

B.2.9 Modbus

B.2.10 TCP

Appendix C Script Commands

C.1 Lua basic grammar

C.1.1 Variable and data type

C.1.2 Operator

C.1.3 Process control

C.2 Command description

C.2.1 General description

3

C.2.2 Motion

C.2.3 Motion parameter

C.2.4 Relative motion

C.2.5 IO

C.2.6 TCP/UDP

C.2.7 Modbus

C.2.8 Program Control

C.2.9 Trajectory

C.2.10 Vision

C.2.11 Conveyor

C.2.12 SafeSkin

4

Preface

Purpose
This document introduces Dobot CR Studio, the mobile App of Dobot industrial robot, which is convenient
for users to understand and use CR Studio to control the industrial robot.

Intended Audience
This document is intended for:

Customer
Sales Engineer
Installation and Commissioning Engineer
Technical Support Engineer

Change History

Date Change log

2024/01/05 The ninth release (Android V4.13.0/iOS V2.14.0)

2023/05/29 The eighth release (Android V4.12.0/iOS V2.13.0)

2023/01/13 The seventh release (Android V4.11.0/iOS V2.12.0)

2022/12/09 The six release (Android V4.10.0/iOS V2.11.0)

2022/10/31 The fifth release (Android V4.9.0/iOS V2.10.0)

2022/08/25 The fourth release (Android V4.8.0/iOS V2.9.0)

2021/05/28 The third release

2020/12/04 The second release

2020/11/16 The first release

5

Symbol Conventions
The symbols that may be found in this document are defined as follows.

Symbol Description

DANGER
Indicates a hazard with a high level of risk which, if not avoided, could
result in death or serious injury

WARNING
Indicates a hazard with a medium level or low level of risk which, if not
avoided, could result in minor or moderate injury, robotic arm damage

NOTICE
Indicates a potentially hazardous situation which, if not avoided, can result
in robotic arm damage, data loss, or unanticipated result

NOTE
Provides additional information to emphasize or supplement important
points in the main text

6

1 Getting Started
Welcome to CR Studio. CR Studio is a mobile control software developed by Yuexijiang for industrial
robot arms. With simple functions and interface and strong practicality, CR Studio can help you quickly
master the usage of Dobot industrial robot arms.

This guide mainly describes how to use CR Studio to control the CR robot (six-axis).

If you are using CR Studio for the first time, you are recommended to read this Guide in the following
order.

1. Main Interface: It is recommended that you learn about the main interface of CR Studio first and
roughly understand the functions of CR Studio.

2. Connecting to Robot: Connect CR Studio to the robot arm and start your experience.
3. Setting: Configure the robot arm based on actual requirements. If the robot is installed in an in-ceiling

or wall-mounting mode or at a certain angle, you need to set the rotation angle and tilt angle under the
disabled state. See Installation for details.

4. Monitoring: Know about the monitoring function provided by CR Studio. If you need to install end
plug-ins, see Dobot+ for configuration.

5. Programming/Process: Know about the programming and process module of CR Studio and try
creating your own project.

6. Remote Control: After developing a project, try running the project through remote control.

7

2 Connecting to Robot
Before connecting to the robot, ensure that the WiFi module has been installed in the controller.

1.Search Dobot controller WiFi in the tablet and connect it. The WiFi name is "Dobot_WIFI_XXX" (XXX
is the robot index on the arm base), and WiFi password is 1234567890 by default.

You can modify the WiFi SSID and password in Software setting under the manager mode. The
modification takes effect after the controller is restarted.

2.Click Connect in the main interface to connect to the controller.

After connecting to the controller successfully, the Connect button switches to Disconnect; and the WiFi
icon displays on the left side of the button, as shown below.

8

3 Main Interface
3.1 Overview
3.2 Top toolbar
3.3 3D model panel
3.4 Major function panel
3.5 Jog board

9

3.1 Overview
CR Studio supports operations in Android and iOS system. It is recommended to be installed in an Android
tablet or iPad. The basic functions and UI design of the two systems are almost the same. This Guide takes
Android tablet as an example to introduce the use of CR Studio.

Start the App to enter the main page, as shown below. Click , and you will see the introduction on the
main page functions.

No. Description

1 Top toolbar

2 3D model panel

3 Major function panel

4 Jog board

10

3.2 Top toolbar
The toolbar is always at the top of the screen when you use CR Studio (the tool bar can be hidden through

). The functions are listed below.

No. Name Description

1 Menu

Click the icon, and the following items will pop up:
Help: View help documents
Lock: Lock the screen (Lock the App screen rather than system
screen). To unlock the screen, enter the manager password or
screen lock password
Crash log: Upload the App crash log to help in troubleshooting
Version info: View the version information of the robot and App
About us: View the information of Yuejiang Technology Co.,
Ltd.
Exit App: Exit CR Studio App

2 Homepage
Click to return to the main interface. When you click this button to
return to the main interface from other interfaces, the content that is
not saved will not lose.

3 Connection

After connecting the WiFi of CR robot, click Connect to connect the
App to the robot arm. See Connecting to Robot for details. After the
connection, the button changes to Disconnect. Clicking the button
again can disconnect the robot arm.

4 Global speed
ratio

Set the global speed ratio. The global speed ratio is the calculation
factor of the actual running speed of the robot arm. For the
calculation method, see Jog setting and Playback setting

5 Alarm
information

Abnormal use of the robot arm will trigger alarms. The icon is white
when there is no alarm, and red when there is an alarm. You will see
the Alarm information after clicking the icon.

6 Enabling button Click to switch the enabling status of the robot arm. See Enabling
status for details.

7 Monitoring
button Click to open the IO Monitor interface. See IO monitor for details.

8 Emergency stop
button

Press the button in an emergency, and robot arm will stop running
and be powered off. See Emergency stop button for details.

Alarm information

The Alarm information interface is shown in the figure below.

11

You can view the alarm information in this page. Type is used to distinguish whether the alarm is sent by
the robot arm or the controller.

When there is an alarm, if the robot arm is not powered off, the end indicator light will turn red.

After resolving the error causing the alarm, click Clear Alarms to clear the alarm.

Enabling status

The robot arm can work only in the enabled state.

When the Enabling button is blue (), the robot arm is in the disabled status. Click the button, and
the “Tips” as well as "Change power status" window will pop up (the eccentric coordinate of the end
load should be set when the J6 axis is 0°, and the load value should not exceed the maximum
allowable load weight of the CR robot). After setting the parameters, click Confirm to enable the
robot. The robot arm starts to move slightly, and then the end indicator light turns green, indicating

that the robot arm is enabled. At the same time, the Enabling button turns green ().

NOTICE

Incorrect load settings may cause abnormal collision detection alarms or the robot arm to be out of
control during dragging.

12

When the Enabling button is green, the robot arm is in the enabled status. Click the button, and a
confirmation box will be displayed. After the confirmation, the robot arm starts to be disabled. The
indicator light at the end of the robot arm turns blue, indicating that the robot arm is disabled. At the
same time, the Enabling button also turns blue.

When the Enabling button flashes blue, the robot is in the drag mode. In this case you cannot disable
the robot or control the robot motion (run projects, jog, Run To specified postures, etc.) through the
software.

If the robot arm is powered off when connected to CR Studio, the Enabling button turns white. To
change the enabling state, you need to power on the robot first.

Emergency stop button

Once the emergency stop button is pressed, the robot arm will stop running and be powered off, and the

emergency stop icon will turn to pressed-down status (), as shown below.

13

If you need to enable the robot arm again, please reset the emergency stop button, clear alarms, power on
the robot and then enable it.

NOTE

If the physical emergency stop button is pressed, the icon of the emergency stop button on the
software will not change. Before clearing the alarm, you need to reset the physical emergency
stop button first (generally by rotating the button clockwise).
The page will not be displayed in the remote control mode.

14

3.3 3D model panel
The 3D model panel, in the left side of the main interface, is used to display the current posture of the
robot. Pressing the right margin of the panel and dragging to the left can hide the panel.

NOTE

The panel can also be used in blockly interface, which is hidden by default. You can press on the
left margin and drag it to the right to display the panel.

Pressing and moving in the panel area and can change the vision angle for observation. You can zoom in or
zoom out through finger gestures. There are four function buttons on the top of the panel, as described
below.

: Display/Hide the working area of the robot.

: Display/Hide the reference coordinate system.

: Display/Hide the movement trajectory of the robot for the last 10 seconds

: Enlarge/shrink the 3D model display area.

15

3.4 Major function panel
The major function modules are in the center part of the main interface, through which you can access
these modules.

Blockly: Click to enter Blockly page. See Blockly for details.

Script: Click to enter Script page. See Script for details.

Setting: Click to enter Setting page. See Setting for details.

Process: Click to enter Process page. See Process for details.

16

3.5 Jog board
The jog board, in the right side of the main interface, is used to control the movement of the robot. Pressing
the panel and dragging to the right can hide the board.

NOTE

The panel can also be used in other interface, which is hidden by default. You can press on the
right margin and drag it to the left to display the panel.

Back to custom posture
Long pressing Back to custom posture can move the robot to the custom posture. See Setting for setting
the custom posture.

17

Coordinate system and step value
You can select ToolCoordinate, UserCoordinate and Step Value.

1. ToolCoordinate: Refer to Tool coordinate system。

2. UserCoordinate: Refer to User coordinate system。

3. Step Value: Displacement value of a single jog
Jog indicates that the robot keeps moving when you press and hold the jog button, and stops
moving when the jog button is released.
The specific value (such as 0.1) indicates that the robot moves this value when you press the jog
button, and then stop moving.

In the Cartesian coordinate system, the unit of this value is mm, and 0.1 represents a
displacement of 0.1mm for each jog.
In the joint coordinate system, the unit of this value is °, and 0.1 represents a displacement
of 0.1° for each jog.

Jog operation panel
CR Studio supports jog operations in three coordinate systems. You can click or long press + or - of each
axis to jog the robot.

R/D/N/Cfg in the bottom of the jog board indicates the direction of each arm. Click to see specific
description.

Joint coordinate system

The joint coordinate system is determined based on the moving joints. All joints are rotated joints, as
shown below.

18

User coordinate system

The user coordinate system is a user-defined coordinate system of a workbench or workpiece. Its origin
and direction of each axis can be determined according to the actual needs. The default user coordinate
system is shown below.

19

Tool coordinate system

The tool coordinate system defines the position of the tool center point (TCP) and the tool posture. Its
origin and direction constantly change with the position and angle of the end workpiece. The default tool
coordinate system is shown below.

20

4 Setting
4.1 Tool coordinate system
4.2 User coordinate system
4.3 Jog setting
4.4 Playback setting
4.5 Safety setting

4.5.1 Safe collision
4.5.2 Joint brake
4.5.3 Terminal load
4.5.4 Drag sensitivity
4.5.5 Advanced function

4.6 Remote control
4.7 Robot posture
4.8 Installation
4.9 Software setting
4.10 Manufactory
4.11 Power voltage (CCBOX)

21

4.1 Tool coordinate system
When an end effector such as welding torch or gripper is mounted on the robot, the tool coordinate system
is required for programming and operating a robot. For example, when using multiple grippers to handle
multiple workpieces simultaneously, you can set a tool coordinate system for each gripper to improve the
efficiency.

CR Studio supports 10 tool coordinate systems. Tool coordinate system 0 is the base coordinate system
which means no tool is used and cannot be changed.

NOTE

When creating a tool coordinate system, make sure that the reference coordinate system is the base
tool coordinate system.

The six-axis tool coordinate system is created by three-point calibration method (TCP +ZX): After
mounting the end effector, adjust the direction of the end effector to make TCP (Tool Center Point) align
with the same point (reference point) in three different directions for obtaining the position offset of the
end effector. Then jog the robot to three other points (A, B, C) for obtaining the angle offset.

Add tool coordinate system

22

Prerequisite

The robot arm has been powered on.

The robot arm has been enabled.

Procedure

NOTE

Click on the left top side to view the instructions on the page, which is more intuitive than
the document.
If 9 coordinate systems have been added, the Add button will disappear, indicating that no more
coordinate system can be added.

1. Mount an end effector on the robot.

2. Jog the robot to make the TCP align with the reference point (a point int the space) in the first
direction. Then click GET on the First Point panel.

23

3. Jog the robot to make the TCP align with the reference point in the second direction. Then click GET
on the Second Point panel.

4. Jog the robot to make the TCP align with the reference point in the third direction. Then click GET
on the Third Point panel.

5. Jog the robot to make the TCP align with the reference point in the vertical direction. Then click GET
on the Pose 1 panel to obtain the fourth point (point A).

6. Jog the Z-axis in the positive direction to move the robot to a point. Then click GET on the Pose 2
panel to obtain the fifth point (point B).

NOTE

This step aims to determine the positive direction of z-axis.

7. Jog x-axis along the positive direction to move the robot to point C (not in the same line with point A
and point B). Then click GET on the Pose 3 panel to obtain the sixth point.

NOTE

This step aims to determine the positive direction of x-axis. The y-axis direction can be
determined by the right-hand rule.

8. Click Add. The tool coordinate system is created successfully, as you can see a new record in the
page.

Other operations
Clicking No. of the corresponding coordinate system (except No.0) can select the coordinate system, and
clicking other columns can modify the values of the corresponding parameters (Offset cannot be
modified).

Run to: Long press Run to to move the robot arm to the obtained point.

Cover: After obtaining the coordinates of six points, select a coordinate system and click Cover to replace
this coordinate system with the newly calibrated coordinate system.

Modify: After modifying the coordinate value of the existing coordinate system, select the coordinate
system, click Modify, and the coordinate value will be updated.

Delete: Select a coordinate system and click Delete to clear the value of the coordinate system.

NOTE

24

Delete operation means clearing the value of the record rather than deleting the record itself. You
can use Cover operation when recalibrating this coordinate system. No.0 coordinate system cannot
ne deleted.

25

4.2 User coordinate system
When the position of workpiece is changed or a robot program needs to be reused in multiple processing
systems of the same type, you can create a user coordinate system on the workpiece so that all paths
synchronously update with the user coordinates, which greatly simplifies teaching and programming.

CR Studio supports 10 user coordinate systems. User 0 coordinate system is the base coordinate system
which cannot be changed.

NOTE

When creating a user coordinate system, make sure that the reference coordinate system is the base
user coordinate system.

The user coordinate system is created by three-point calibration method. Move the robot to three random
points: A, B and C. Point A is defined as the origin. The line from point A to point B is defined as the
positive direction of x-axis. The line that point C is perpendicular to x-axis is defined as the positive
direction of y-axis (In the actual calibration, point C does not have to be on the y-axis, but should fall in the
plane quadrant determined by the positive direction of the x-axis and y-axis, and should not be on the x-
axis. The system can automatically calculate the positive direction of y-axis). The z-axis can be defined
based on the right-hand rule.

Add user coordinate system
Prerequisite

The robot arm has been powered on.
The robot arm has been enabled.

Procedure

26

NOTE

Click on the left top to view the instructions on the page, which is more intuitive than the
document.
If 9 coordinate systems have been added, the Add button will disappear, indicating that no more
coordinate system can be added.

1. Jog the robot to a point (origin of the coordinate system). Click GET on the First Point panel.
2. Jog the robot to the second point on the x-axis. Click GET on the Second Point panel.
3. Jog the robot to the third point (The point should be in the plane quadrant determined by the positive

direction of the x and y axis, and should not in the x-axis.). Click GET on the Third Point panel.

4. Click Add. The user coordinate system is created successfully, as you can see a new record in the
page.

Other operations
Clicking No. of the corresponding coordinate system (except No.0) can select the coordinate system, and
clicking other columns can modify the values of the corresponding parameters.

27

Run to: Long press Run to to move the robot arm to the obtained point.

Cover: After obtaining the coordinates of three points, select a coordinate system and click Cover to
replace this coordinate system with the newly calibrated coordinate system.

Modify: After modifying the coordinate value of the existing coordinate system, select the coordinate
system, click Modify, and the coordinate value will be updated.

Delete: Select a coordinate system and click Delete to clear the value of the coordinate system.

NOTE

Delete operation means clearing the value of the record rather than deleting the record itself.
You can use Cover operation when recalibrating this coordinate system.
No.0 coordinate system cannot ne deleted.

28

4.3 Jog setting

NOTE

The function requires manager authority (default password: 000000).

The optimal motion parameters have been set before delivery, and are not recommended to be
modified without special requirements. If you feel that the robot speed is too high, you can
adjust it downwards according to your actual needs. If a higher speed is required, please contact
technical support for a speed increase solution.

You can set the maximum speed and acceleration in the Joint coordinate system and Cartesian coordinate
system. Click Save after setting the parameters.

Actual robot speed/acceleration = set speed/acceleration × global speed × ratio.

Click Default to restore all the values in the corresponding module to the default values.

29

4.4 Playback setting

NOTE

The function requires manager authority (default password: 000000).

The optimal motion parameters have been set before delivery, and are not recommended to be
modified without special requirements. If you feel that the robot speed is too high, you can
adjust it downwards according to your actual needs. If a higher speed is required, please contact
technical support for a speed increase solution.

You can set the speed, acceleration and jerk parameters in the Joint coordinate system and Cartesian
coordinate system. Click Save after settings.

Actual robot speed/acceleration = set speed/acceleration × global speed ratio × set percentage in speed
commands when programming.

Click Default to restore all the values in the corresponding module to the default values.

30

4.5 Safety setting

31

4.5.1 Safe collision
Collision detection is mainly used for reducing the impact on the robot to avoid damage to the robot or
external equipment. If collision detection is activated, the robot arm will suspend running automatically
when hitting an obstacle.

This page does not support switching on/off collision detection. If false alarms still occur frequently even
at the lowest collision level and you need to switch off collision detection, please contact technical support.

There are five collision detection levels, with Level 5 the highest. The higher level you select, the smaller
force the robot requires to stop after collision detection.

Method refers to the treatment after collision while the robot arm is running the project:

Stop: The robot arm stops running the project.
Pause: The robot arm pauses. You need to select whether to resume the operation after solving the
cause of the collision according to the actual condition, or stop the operation.
Drag mode: The robot arm stops running the project and automatically enters drag mode.

 NOTICE

32

If the load is set incorrectly, it may cause the robot arm to trigger collision detection mistakenly
while moving and automatically enters the drag mode, which poses a safety risk when the robot arm
moves at a high speed.

Back-off mode: The robot arm automatically back off the specified distance according to the
trajectory before the collision. The range of the back-off distance is 0~50 (mm).

When the force required to stop is detected when you jog the robot, the "Collision Detected" window will
pop up. In this case, you need to resolve the cause of the collision and click Reset. If you need to operate
the App to resolve the collision cause, click Remind me in a minute to temporarily close the pop-up
window (a pop-up message will be displayed again in one minute).

The modification takes effect after you click Save.

33

4.5.2 Joint brake
Braking prevents the servo motor shaft from moving when the servo driver is not in operation, so that the
motor keeps its position locked and ensures that the moving part of the machine will not move because of
its self weight or external force.

If you want to drag joints manually, enable the brake function, that is, hold the joint manually after the
robot arm is disabled, then click the button of the corresponding joint.

 NOTICE

When enabling the function, hold the joint with your hand to prevent it from moving.

34

4.5.3 Terminal load
To ensure optimum robot performance, it is important to make sure the load and eccentric coordinates of
the end effector are within the maximum range for the robot, and that Joint 6 does not become eccentric.
Setting load and eccentric coordinates properly improves the motion of robot, reduces vibration and
shortens the operating time.

NOTE

Every time you enable the CR robot, a "Change power status" window will pop up which requires
you to set the load parameters. The parameters you set will be synchronized to the "Terminal Load"
page.

You need to set the eccentric coordinate of the load when J6 axis is 0°.

The load weight includes the weight of the end effector and workpiece, which should not exceed the
maximum load of the robot arm. When the load weight is set to 0, an exclamation mark on the yellow
background will be displayed. The mark will also appear on the right bottom of the Enabling icon
after the robot is enabled.

NOTICE

Incorrect load settings may cause abnormal collision detection alarms or the robot arm to be out of
control during dragging.

35

The setting takes effect after you click Save.

Please set load and eccentric coordinates properly. Otherwise, it may cause errors or excessive shock, and
shorten the life cycle of parts.

36

4.5.4 Drag sensitivity
Drag sensitivity setting is mainly used to adjust the sensitivity of joints during dragging.

The lower the sensitivity is, the greater resistance there is during dragging.

Click Default to restore the sensitivity of all joints to default values.

Click Save after setting the sensitivity.

37

4.5.5 Advanced function

NOTE

The function requires manager authority (default password: 000000).

You can set in this page when you need to enable or disable advanced functions according to the site
condition.

It is recommended to remain the default settings if you do not have special requirements.

38

4.6 Remote control
External equipment can send commands to a robot (control and run the taught program file) in different
remote control modes, such as remote I/O mode and remote Modbus mode. You can set the remote mode
through App.

NOTE

You do not need to restart of the robot control system when switching remote control mode.
No matter what mode the robot control system is in, the emergency stop switch is always
effective.
If the robot is running in the remote control mode, it cannot be switched to other working
modes. You need to stop its running before switching to other modes.
Clicking Restore can automatically switch the interface to the current working mode.

App-online
The default mode is App-online mode, in which you can use the App to control the robot.

Modbus-offline
External equipment can control the robot arm in the Modbus-offline mode.

39

The function of Modbus register is shown above. You can click to edit it.
The procedure of running the project in the Modbus-offline mode is shown below.

Prerequisite

The project to be running in the remote mode has been prepared.
The robot has been connected to the external equipment with the LAN interface. You can connect
them directly or through a router. The IP address of the CR robot and the external equipment must be
within the same network segment without conflict.
The robot arm has been powered on.

Procedure

1. Click Modbus-Offline in the Remote Control page, and select an offline project for running.

2. If you need to start multiple different projects through Modbus, click Advanced Setting. In Advanced
Settings, you can set Hold register address of the option project and configure the list of option
projects, as shown in the following figure.

3. Click Save. Now the robot arm has entered remote Modbus mode. Only the emergency stop command
is available. At the same time, The Debug Iog will appear at the right top of the interface. Click to
view the debug information printed during the operation of the robot arm.

4. Trigger the starting signal on the external equipment. The robot will move as the selected project file.
5. If the stop signal is triggered, the robot arm will stop moving.

40

IO-offline
External equipment can control the robot arm in the IO-Offline mode.

The specific IO interface definition of the control system is shown in the figure above. You can click
to edit it. When the type of control cabinet is CCBOX, safe I/O and universal I/O share the same terminal.
The terminal configured as safe I/O cannot be configured as remote I/O.

Clicking Advanced Setting can configure multiple projects through group I/O.

41

1. Click + or - to increase or decrease the number of addresses assigned to group I/O. The more the
assigned addresses are, the more configurable projects are.
0 address: Optional projects cannot be configured.
1 address: 1 optional project can be configured.
2 addresses: 3 optional projects can be configured.
3 addresses: 7 optional projects can be configured.
4 addresses: 15 optional projects can be configured.

2. You can modify the assigned address through the drop-down list. The address assigned to group I/O
cannot be duplicated with remote I/O or safe I/O (CCBOX).

3. After assigning addresses, you can set optional projects (at least one) for each group IO value.
In remote I/O mode, before running the project, select the corresponding optional project by
setting the corresponding (black refers to ON, and white refers to OFF) group IO value.
Take assigning DI1~ DI4 in the figure above as an example:

DI1 is ON, DI2, DI3 and DI4 are OFF: select the first optional project;
DI1 and DI2 are ON, DI3 and DI4 are OFF: select the third optional project;
DI1~ DI4 are all ON: select the 15th optional project.
When all group IOs are set to OFF, it means selecting the main project configured in the
previous page.

4. Click Save to complete the configuration.

The procedure of running the project in the IO-offline mode is shown below.

Prerequisite

The project to be running in the remote mode has been prepared.

42

The external equipment has been connected to the robot arm by I/O interface.
The robot arm has been powered on.

Procedure

1. Click IO-Offline in the Remote Control page, and select an offline project for running.
2. Click Save. Now the robot arm has entered remote IO mode. Only the emergency stop command is

available. At the same time, The Debug log will appear at the right top of the interface. Click to view
the debug information printed during the operation of the robot arm.

3. Trigger the starting signal on the external equipment. The CR robot will move as the selected project
file.

4. If the stop signal is triggered, the robot arm will stop moving.

TCP/IP secondary development
This mode is for users to develop control software based on TCP. If you need to develop the software, refer
to Dobot TCP/IP Protocol (placed in Github).

43

https://github.com/Dobot-Arm/TCP-IP-Protocol

4.7 Robot posture
CR Studio supports moving the CR robot to common postures: package posture, home posture and custom
posture.

Moving the robot to the package posture can reduce the robot space, making it easy to pack and
transport.
The home posture refers to the home point.
The custom posture can be defined according to your requirements, which is convenient to move the
robot to the position.

Package posture: Long press Back to package posture to move the robot to the factory posture.

Home posture: Long press Back to home posture to move the robot to the home point.

Custom posture: Jog the robot to a position and click GET, and the custom posture will be saved.
Long press Back to custom posture to move the robot to the defined posture.

44

4.8 Installation

NOTE

The function requires manager authority (default password: 000000).

In general, the CR robot is installed on a stable table or ground, and no operation is required in this case. If
the robot is installed in an in-ceiling or wall-mounting mode or at a certain angle, you need to set the
rotation angle and tilt angle under the disabled state.

Manual calibration

You can select a proper installation posture based on the actual condition.

Slop angle: The angle that a robot rotates counterclockwise around X-axis at the origin point.
Rotation angle: The angle that a robot rotates counterclockwise around Z-axis at the origin point.

Automatic calibration

After installing and enabling the robot, you can click Calibration and operate according to the pop-up
window to obtain the slop angle and rotation angle.

45

Click Save after calibration to save the settings.

Click Restore to restore the calibrated angle to the default value.

46

4.9 Software setting

Screen lock setting: You can set the screen lock time of the App and change the screen lock password
as required. If you do not operate during the specified period, the screen will be automatically locked.
You can use the manager password or screen lock password to unlock the screen. The default
password is 000000.

WiFi setting: The robot can communicate with external equipment by WiFi. You can modify the WiFi
name and password on the "WiFi Setting" panel and then restart the controller to make it effective.
The default password is 1234567890.

IP setting:

The robot can communicate with external equipment by the Ethernet interface which supports TCP,
UDP and Modbus protocols. You can modify the IP address in the "IP Setting" panel. The IP address
of the CR robot must be within the same network segment as the external equipment without conflict.

If the robot is connected to external devices directly or through a switch, select Manual, and
change the IP address, subnet mask and default gateway. Then click Confirm.

If the robot is connected to external devices through a router, select Auto to automatically assign
IP address. Then click Confirm.

User manage: You can modify the user password in the "User manage" panel. The default password is
000000.

47

4.10 Manufactory
The functions in this module are generally provided by Dobot technical support or the factory. This section
will not give detailed description on the module.

48

4.11 Power voltage (CCBOX)
When the type of the controller is CCBOX, you need to set the input voltage range of the controller.

Please set according to the actual range of input voltage, with maximum voltage no more than 60V,
minimum no less than 30V.

49

5 Monitoring
5.1 IO monitor
5.2 Modbus
5.3 Global variable
5.4 Robot state
5.5 Run log
5.6 Dobot+

50

5.1 IO monitor

Controller and Tool IO
You can set the I/O status of the controller and the end tool in the App. For the I/O definition, refer to the
IO description in the corresponding CR robot hardware guide. Now take CR robots as an example to
introduce I/O page.

51

I/O monitor has three functions: output, monitor and simulate. - Output: Set the digital output or analog
output (The analog output takes effect only when the setting is kept). Clicking Reset in Digital Output
panel can reset all modified output value. - Monitor: Monitor the status of the input and output. - Simulate:
Simulate the digital input status for debugging the program, as shown below.

When the type of control cabinet is CCBOX, you can set the digital input/output type to PNP (high level
effective) or NPN (low level effective), as shown below.

52

Clicking Edit on the right top of Digital Output or Digital Input module will zoom in on the corresponding
IO module. Take Digital Output as an example, as shown below.

53

Click Add IO Note to enter the note-setting page. Click the note box on the right side of a port, and you
can add or modify the note for this port. Click Save after setting.

Safe IO
You can set the functions of each safe I/O interface in the Safe IO page. Click Edit to modify the function,
and click Save after setting. For details on the safe I/O, refer to the IO description in the corresponding
robot hardware guide. When the type of control cabinet is CCBOX, safe I/O and universal I/O share the
same terminal. The terminal configured as remote I/O (including advanced setting) cannot be configured as
safe I/O.

54

Extended IO
Besides the default tabs, you can click + to add a custom tab for monitoring the IO in Modbus
communication, as shown below.

Name: Name of the tab.

55

slave id: Enter the device ID.

IP address: Enter the address of the Modbus device. It cannot be the same as the IP address of the
controller LAN interface (for example, the default 192.168.5.1), otherwise it may cause functional
abnormalities.

port: Enter the port number of Modbus communication.

Digital Input/Digital Output: Configure the register address and number of DI/DO after selecting the
function.

After clicking CONFIRM, a new tab will appear in the IO Monitor module. The function takes effect only
after you restart the controller.

Clicking on the right of the tab can delete the tab.

56

5.2 Modbus
This module is used to connect Modbus slave.

Slave ID: slave device ID.
Function: select the function type of the slave device, including coil register, discrete input, hold
register and input register
Address/Quantity: address and number of registers.
Scanning rate: time interval of scanning the slave station by the robot arm.

Click Connect to start connecting to the slave station. Click Disconnect to disconnect from the slave
station.

57

When the slave function is a coil register or a hold register, clicking a cell in the table can modify the
value and alias of the corresponding address.
When the slave function is discrete input or input register, clicking a cell in the table can modify the
alias of the corresponding address.

58

5.3 Global variable
The module is used to configure and check the global variables.

After setting the global variable, you can call the variable through relevant blocks in Blockly
programming, or call the variable through the variable name in Script programming, as shown below.

CR Studio supports the following types of global variables:

bool: Boolean value
String: String
int: Integer
float: Double precision floating number
point: The point of the robot can be obtained by moving the robot to the specified position, as shown
in the figure below.

59

Global Hold:

When Global Hold is checked, any modification to the variable will be saved, and the modified value
will be saved regardless of exiting the script or powering off and restarting the robot.
When Global Hold is not checked, modifications to the variable are only effective when the script is
running. It will be restored to the initial setting value when exiting the script.

Naming recommendations for global variable

It is recommended to use the format of g_project abbreviation_variable meaning to name global
variables and avoid using names that are too short.

It should be noted that global variable names cannot duplicate lua's reserved keywords and the functions
and variable names already defined by Dobot.

-- lua's reserved keywords
and, break, do, else, elseif, end, false, for,
function, if, in, local, nil, not, or, repeat,
return, then, true, until, while, goto

-- Dobot's defined functions and variables (including internally reserved functions)
Accel, AccelR, AccelS, AI, AO, AOExecute, Arc3,
Arc3Weave, Arch, BlockHighlight, CalcTool, CalcUser,
CheckGo, CheckMove, Circle3, CnvVison, CollisionLogInfo,
CP, CRC16, CyHelix, DestroyCam, DI, DIGroup, DO,
dobot_hook, DOExecute, DOGroup, ECP, ECPSet, ElapsedTime,

60

EventLog, FC, FCAct, FCCalib, FCCondDisplac, FCCondDisplace,
FCCondForce, FCCondTCPSpeed, FCCondTorque, FCCondTorque,
FCDeact, FCForce, FCLine, FCLoadID, FCRefDirect, FCRefForce,
FCRefLine, FCRefRot, FCRefSpiral, FCRefTorAdjust, FCRefTorque,
FCRel, FCRot, FCSetCompliance, FCSetGain, FCSpiral, FCTorque,
GetABZ, GetAngle, GetCnvObject, GetCoils, GetHoldRegs,
GetInBits, GetInRegs, GetLayerIndex, GetPartIndex, getPathPose,
GetPathStartPose, GetPose, GetRunningData, GetTraceStartPose,
Go, GoIO, GoR, GoToolR, GoUserR, GRead, GWrite, IceCreamGO,
IceCreamP, IceCreamR, init(pix), InitCam, InverseSolution,IsDone,
Jerk, JerkR, JerkS, Jump, LimZ, Linear, Linear, LoadSet, LoadSwitch,
Log, LogFormat, MatrixPallet, MD, ModbusClose, ModbusCreate,
Move, MoveIn, MoveIO, MoveJ, MoveJIO, MoveJR, MoveOut, MoveR,
MoveToolR, MoveUserR, MoveWeave, NewPose, OFF, ON, PalletSync,
Pause, print, QuitScript, ReadDB, RecvCam, Release, RelJointMovJ,
RelMovJTool, RelMovJUser , RelMovLTool, RelMovLUser, Reset,
ResetElapsedTime, RJ, Rotation, RP, ScrewCommitErrInfo,
ScrewCommitInfo, ScrewCommitProductInfo, ScrewDriverGetError,
ScrewDriverGetResult, ScrewGetSelectedSN, ScrewSetCurrentSN,
SendCam, ServoJ, ServoP, SetABZPPC, SetBackDistance,
SetCnvPointOffset, SetCnvTimeCompensation, SetCoils, SetCollisionLevel,
SetDOMode, setExcitMode, SetExicitCmd, SetExicitCmdZ, SetHoldRegs,
SetObstacleAvoid, SetPartIndex, SetSafeSkin, SetStackMode,
SetTool, SetTool485, SetToolBaudRate, SetToolPower, SetUnstackMode,
SetUser, SetWeldParams, SixForceHome, Sleep, Sleep(period), Speed,
SpeedFactor, SpeedR, SpeedS, Spiral, StartCamera, StartPath,
StartTrace, StopMove, StopSyncCnv, Sync, SyncCnv, SyncExit, Systime,
TCPCreate, TCPDestroy, TCPRead, TCPReadMultiVision, TCPReadVision,
TCPSpeed, TCPSpeedEnd, TCPStart, TCPWrite, TeachPallet, ToolAI,
ToolAnalogMode, ToolDI, ToolDO, ToolDOExecute, TriggerCam,
UDPCreate, UDPRead, UDPWrite, Wait

61

5.4 Robot state
The module is used for checking the real-time status of the robot. When the type of control cabinet is
CCBOX, the average power consumption and robot current are not displayed.

NOTE

You have permission to clear the runtime data and modify the controller system time only in
manager mode.

62

63

5.5 Run log
You can view the running log to know about the operation history of the robot.

64

5.6 Dobot+
The page is used to install and configure the end plug-in for controlling the end tool of the robot.

Click Add Plugin to view the plug-in list. You can click + to install the plug-in, or click Import to upload
a plug-in.

The plug-in will be displayed in the Dobot+ main page after installation.

65

Meanwhile, relevant blocks/commands will be added in Blockly programming and Script programming.
Now take DH gripper as an example, as shown in the figure below.

Click the plug-in icon to configure the basic functions of the plug-in. Different plug-ins vary in
configuration methods. This section takes DH gripper as an example to introduce the configuration.

66

You can click Add Hotkey on the right-top of the page to set a hotkey for the plug-in. After saving it, you
can control the end tool through the end button.

For example, select DH. Set Hotkey1 to DhOpen, and Hotkey2 to DhClose, and click Save. Then press
the button at the end of the robot, as shown below, and the gripper will open. Press the button again, and
the gripper will close.

67

6 Programming
6.1 Blockly
6.2 Script

68

6.1 Blockly
CR Studio provides blockly programming. You can program through dragging the blocks to control the
robot.

NOTE

This document only introduces the use of blockly programming. For specific description on blocks ,
see Appendix B.

Program
The Program interface is the main interface of Blockly programming, as shown below.

No. Item Description

1 Function tab Switch the function tabs of Blockly programming.

2 Project name Display the current project name

3 Project control
button Control the project to debug (single-step running), run, pause or stop

4
Project
management
button

Manage the project file. After clicking Open, you can open the saved
projects and realize the following functions.

Convert a blockly program to a script program, and open it in the
Script module after conversion.
Export the selected project files to local, and import the project
files (including the project files automatically backed up by the

69

App) from local.

5 Block area
Provide blocks used in programming, which are divided into different

colors and categories. Click on the right top of the module, and
you will see the relevant description on the blocks.

6 Programming
area

Program editing area. You can drag the blocks to the area to edit a
program. Right-click the block in the programming area to open the
menu, which supports copying blocks, deleting blocks, and turning a
group of blocks (not include Event blocks) into sub-routines.

If a block is modified but not saved, you will see on the left side
of the block, which prompts that the block has been modified.

The icons on the right side of the programming area is described below.

Icon Description

Enter editing mode.
In editing mode, you can select multiple or all blocks to copy or delete.
Click Cancel Checking or do other operations in the programming area to exit
the editing mode.

Lock/Unlock the programming area.

Zoom in/Zoom out/Restore the programming area.

Back to the top of blocks/Center blocks/Back to the bottom of blocks.

Drag the block to this icon to delete it, or long press the block and select Delete
Block to delete it.

70

Point
The Point interface is used to manage the points in programming, as shown below.

No. Item Description

1
Point
management
button

After moving the robot to a specified point, click Add to add a
new record.
After selecting a single point, click Cover to cover the selected
point with the current point.
After selecting a point, click Delete to delete the current point.
Click Save to save the current point

2 Point list Display the added points. Tool means the tool coordinate system, and
User means the user coordinate system.

3 Run to function After selecting a single point, select the Mode. Then long press Run
to to move the robot to the selected point

Debug
The debug interface is used to view the script corresponding to the blocks, project operation log and 3D
model of the robot motion to confirm whether the running process and result meet your expectation, as
shown in the figure below.

71

The Main thread tab displays the script transformed from Blockly program. During the running
process, you can check the command that is running in real time.
The Variable tab displays the self-defined variables in Blockly programming.
After clicking Debug, the button turns to Step. Clicking this button can run this program step by step
(Step refers to running a single block, which may corresponds to multiple lines of script).

Click under the programming area, and the running information, including the error
information during the running and debugging process will be displayed here.

Operation procedure
The following example describes the procedure of editing a block program to control the robot to move
between two points repeatedly.

1. Open the Point page. Move the robot arm to a point (P1), and click Add to save the point P1.

2. Move the robot arm to a point (P2), and click Add to save the point P2.

3. Open the Program page. Drag the forever block from the block area and place it under the Start
block.

4. Drag inside the forever block, and select P1 as the target point.

72

5. Drag under the previous block, and select P2 as the target point.

6. Click Save, enter the project name and click Save.
7. Click Run, and the robot starts to move.

73

6.2 Script
CR supports various APIs, such as motion commands, TCP/UDP commands etc., which uses Lua language
for secondary development. CR Studio provides a programming environment for Lua scripts. You can
write your own Lua scripts to control the operation of robots.

NOTE

This document only introduces the use of script programming. For specific description on
commands, see Appendix C.

Program
The Program interface is the main interface of Script programming, as shown below.

No. Item Description

1 Function tab Switch the function tabs of Script programming.

Display/Hide the function list.
You can click Dobot APIs in the function list to generate

corresponding code by configuring parameters. Click to see API
guide.

74

2 Function list

3
Project
management
button

Manage the project file. After clicking Open, you can export the
selected project files to local, and import the project files (including
the project files automatically backed up by the App) from local.

4 Project name Display the current project name

5 Project control
area

Display the status of the project and control the running of the project

: Click to start running the program

: Click to enter the debug mode. The icon turns in the
debug mode. In this case you can run the program with breaking
points, or debug the program step by step.

: Click to stop running the program.

: Click to run the program step by step (only used in the debug
mode).

6 3D robot model Display the 3D robot model in real time

7 Code area

Lua code editing area
The main thread is used to run the main code of the robot.
The Variable tab defines the variables used in the project.
(Only for Android) Click the index number on the left of the

code to add a breakpoint. In debug mode, click to start the
breakpoint running, and the program will be automatically
paused when running to the breakpoint.
Click + on the right top corner to add sub threads (no more than
5), which run parallel with the main thread, such as I/O control.

Click below the code area to display the running
information, including error messages during running or
debugging.

Click to lock the code area, and click it again to unlock the
area.

75

Steps for running the project automatically backed up by APP: 1. Click **Open**, and click **Import**
in the **Project List** window.

1. Select the backup project you want to import, and click Import.

2. In the "Project List" window, select the project imported in Step 2, and click Open.

3. Click Save on the Programming page, and then run the project.

Point
Point page is used to manage the points in programming, as shown below.

76

No. Item Description

1
Point
management
button

After moving the robot to a specified point, click Add to add a
new record.
After selecting a single point, click Cover to cover the selected
point with the current point.
After selecting a point, click Delete to delete the current point.
Click Save to save the current point

2 Point list Display the added points. Tool means the tool coordinate system, and
User means the user coordinate system.

3 Run to function After selecting a single point, select the Mode. Then long press Run
to to move the robot to the selected point

Operation procedure

The following example describes the procedure of editing a script program to control the robot to move
between two points repeatedly.

1. Open the Points panel. Move the robot arm to a point (P1), and click Add to save the point P1.
2. Move the robot arm to another point (P2), and click Add to save the point P2.

3. Add loop commands in the programming area.
4. Add a motion command under the loop command, and set P1 as the target point.

77

5. Add another motion command, and set P2 as the target point.

 while(true)
 do
 Go(P1)
 Go(P2)
 end

6. Click Save, enter the project name and click Yes.

7. Click , and the robot starts to move.

78

7 Process
7.1 Trajectory playback
7.2 Conveyor belt

79

7.1 Trajectory playback
The trajectory playback is used to play back the trajectory recorded during manually dragging the robot
arm. The main interface is shown below.

Click NewTrajectory on the right top corner, and the indicator light at the end of the robot turns yellow.
Now you can drag the robot. The trajectory will be recorded for playback.

After recording the trajectory, click Save path on the right top corner. Now the indicator light turns green,
and a new record named after the recording time is added in the Trajectory file list.

80

Click the saved trajectory, and you will see two buttons: Delete, Rename and Playback.

Click Playback to play back the recorded trajectory of the robot. In this case the indicator light at the
end of the robot flashes yellow, and the robot starts to move. After playback, the robot stops moving,
and the indicator light turns green.
Click Rename to modify the name of the trajectory file.
Click Delete to delete this trajectory.

NOTE

The saved trajectory file can play back relevant called commands through trajectory in blockly and
script programming.

Click Advanced to set the playback mode. You can set the speed ratio of playback if you do not select
Recurring at a uniform speed.

81

7.2 Conveyor belt
Conveyor process is that the photoelectric sensor detects the objects on the conveyor when the conveyor is
moving, and the robot picks them up as they move.

Building Environment
The figure below shows a full process environment of conveyor tracking.

The communication diagram is shown below.

Encoder

An encoder is used to record the conveyor moving distance and the workpiece position, and report them to
the CR robot. The encoder should be connected to the ABZ encoder interface on the CR controller, as
shown below. The recommended encoder model is E6B2-CWZ1X (1000P/R).

Taking E6B2-CWZ1X（1000P/R）encoder as an example, the pin connection is shown in the table below.

82

Color Port

Black A+

Black and red A-

White B+

White and red B-

Orange Z+

Orange and red Z-

Brown I/O 5V

Blue I/O 0V

Photoelectric Sensor

The photoelectric sensor outputs different level signals according to whether the workpiece is detected or
not. The control system can detect the workpiece through the signal edge. Connect the photoelectric sensor
to a DI interface on the controller, as shown below.

Calibrating Conveyor
Before configuring the conveyor process, you need to calibrate the conveyor for obtaining the positional
relationship between the conveyor and the robot. In the following steps, the user coordinate system is used
for calibration.

Before calibration, you need to install a calibration needle at the end of the robot, and prepare a label for
calibration.

1. Paste a label on the conveyor, as shown below.

83

2. Enter User coordinate system page.

3. Enable the robot. Jog the robot to the label position on the conveyor to obtain the first point (point A,
the origin of the User coordinate system).

4. Control the conveyor to move a specified distance.

5. Jog the robot to the label position on the conveyor to obtain the second point (point B, to determine
the x-axis).

6. Jog the robot to a point not in the line determined by point A and B on the conveyor to obtain the third
point (point C, to determine the y-axis).

84

7. Add or cover a coordinate system, and save it.

Configuring conveyor
Click Conveyor belt in Process page to start configuring the conveyor.

Basic settings

Conveyor Type: Only linear type is supported (cannot be configured).
Encoder Channel: The channel is default (cannot be configured).
User Coordinate: Select the conveyor coordinate system saved in the last step.
Check Method: Only sensor is supported (cannot be configured).

85

Encoder

Calibrate the encoder resolution. The encoder resolution is the pulse increment of the encoder per unit
length that the conveyor moves.

1. Paste a label on the conveyor. Jog the robot to the label position on the conveyor, and click Get
Coordinate in Position One line to obtain the value of Position 1.

2. Control the conveyor to move a specified distance and stop it.
3. Jog the robot to the label position on the conveyor. Click Get Coordinate in Position One line to

obtain the value of Position 2.
4. Set the direction of the encoder according to the actual condition (taking Positive as an example).
5. Click Calculate Resolution to obtain the encoder resolution.

After setting in this page, click Next to set the sensor.

Sensor settings

Trigger input IO: Set the DI port index in the controller to which the sensor is connected.
Deduplication distance: After a valid signal is detected, if the signal changes within a subsequent
distance, the signal will be considered as invalid and automatically eliminated. The value can be set to
2mm ~ 5mm based on the actual situation.
Trigger type: Only rising edge trigger is supported (cannot be configured).

Sensor calibration

The sensor calibration aims to obtain the position where the sensor detects the workpiece so that the
position of the workpiece under the User coordinate system at every moment can be calculated based on
the coordinate offset when the workpiece moves along with the conveyor.

1. Click Start Listening in Sensor Set to start listening the sensor signal.
2. Place a workpiece on the upsteam of the conveyor. Control the conveyor to move. After the sensor

86

detects the workpiece and the workpiece is within the workspace of the robot, stop the conveyor.
3. Jog the robot to the workpiece center, then click Get to obtain the current position.
4. Click Calculate to obtain the position of the sensor.

After setting in this page, click Next to set the working border.

The working border is used to set the working area of the robot on the conveyor.

Work enter border: After the workpiece crosses this border, the robot arm starts to track and pick up
the workpiece.
Pick max border: When the workpiece crosses the border, If the robot arm has not started picking the
workpiece, it is regarded that it cannot finish the pickup of the workpiece, so it will not pick up the
workpiece. The border should be set based on the moving speed of the conveyor and the actual
experience. It is recommended to debug multiple times before obtaning the optimal value.
Work off border: After the workpiece crosses the border, the robot arm will stop tracking the
workpiece (to prevent the robot from tracking out of the working area), and trigger alarms.

Jog the robot to the corresponding position of each border, and click the buttons to set the values.

Click Save on the right top corner. Now you can use the conveyor configuration in the project.

Example
After configuring the parameters of the conveyor belt, you can edit a script by calling the conveyor belt
APIs to realize conveyor tracking.

The process of the conveyor belt tracking is as follows:

87

In this example, you need to teach six points under the user coordinate system set when configuring the
conveyor belt.

Waiting point: P1
Tracking point: P2
Pickup point: P3
Lifting point: P4
Point above the placing point: P5
Placing point: P6

88

The script is as follows.

CnvVison(0) -----------------------//Start the conveyor

DO(9,0) -----------------------//Control the start-up and status of air pump through DO1 and D
O2

DO(2,0)

local flag -----------------------//Whether there is a workpiece label

local typeObject -----------------------//Type of workpiece

local point = {0,0,0} -----------------------//Queue Workpiece coordinates

while true do

 Go(P1,"Speed=100 Accel=100 SYNC=1") ---//Waiting point, generally set within the workspa
ce

 print("Test")

 while true do

 flag,typeObject,point = GetCnvObject(0,0) --//Check whether there is a workpiec
e. If there is, break.

 if flag == true then

 break

 end

 Sleep(20)

 end

 SyncCnv(0) -----------------------//Synchronize the conveyor belt and start tracking

89

 Move(P2,"SpeedS=100 AccelS=100") ------------------//Over the pickup point

 Move(P3,"SpeedS=100 AccelS=100") ------------------//Pickup point

 Wait(100)

 DO(9,1) -----------------------//Turn on the air pump to pick up the workpiece

 --DO(2,1)

 Wait(100)

 Move(P4,"SpeedS=100 AccelS=100 SYNC=1") ---------//Lift the workpiece

 StopSyncCnv() -----------------------//Stop conveyor tracking

 Sleep(20)

 Go(P5,"Speed=100 Accel=100") ----------------//Over the placing point

 Go(P6,"Speed=100 Accel=100 SYNC=1") --------//Placing point

 Sleep(1000)

 DO(1,0) -----------------------//Turn off the air pump

 DO(2,0,"SYNC=1")

 Sleep(1000)

 Go(P5,"Speed=100 Accel=100")

end

90

8 Best Practice
This chapter describes the complete process of controlling a robot arm through remote I/O to help you
understand how the various functions of Dobot CRStudio are used in a coordinated manner.

Now assume the following scene: after pressing the start button, the running indicator light is on. The robot
arm grasps the material from the picking point through the end gripper, moves to the target point to release
the material, and then returns to the picking point again to grasp the material… The process is executed
repeatedly.

In order to achieve the scene above, you need to install a gripper at the end of the robot arm (taking DH
gripper as an example, please refer to DH gripper user guide for its installation), and connect the buttons
and indicators to the controller I/O interface (assuming the start button is connected to DI11 and the stop
button is connected to DI12; the running indicator is connected to DO11, and the alarm indicator is
connected to DO12. For the wiring, refer to the corresponding hardware guide of the robot).

Overall process
After installing the hardware and the powering on the robot arm, perform the software operations as
follows:

1. Connect the robot
2. Install Dobot+ plug-in (optional)
3. Set and select a tool coordinate system
4. Edit the project file
5. Configure and enter remote I/O mode

Procedure

Connecting and enabling robot

For details about connecting to the robot, refer to Connecting to Robot.

1. Search Dobot controller WiFi name and connect it. The WiFi SSID is Dobot_WIFI_XXX (XXX is
the robot index located on the base), and WiFi password is 1234567890 by default.

2. Select a robot on the top of CRStudio interface and click Connect (it will turn to Disconnect after
successful connection).

91

3. Click the enabling button and set the load parameters to enable the robot.

Installing Dobot+ plug-in (optional)

For details about Dobot+ plugin, refer to Dobot+. Here takes DH plugin as an example.

If the installed end tool has no corresponding plug-in, skip this step and directly control the end tool
through I/O commands in subsequent programming.

1. Click Monitor > Dobot+ to open the Dobot+ panel.
2. Click Add Plugin, and then click + on the left side of the DH plug-in to complete the installation.

Setting and selecting tool coordinate system

92

For details about tool coordinate system, refer to Tool coordinate system.

Editing project

For details on programming, refer to Blockly and Script. Here takes Blockly as an example.

To achieve the scene described at the beginning of this chapter, you need to teach four points, namely the
picking point P1, the transition point P2 (above the picking point), the transition point P3 (above the
uploading point), and the uploading point P4.

1. Open the Point page, move the robot arm to P1, and click Add.

2. Add P2, P3 and P4 in the same way.
3. Drag the blocks to the programming area to realize picking and unloading the material. The figure

below shows a simple program for your reference.

93

4. Save the project.

Configuring and entering remote I/O mode

For details about remote control, refer to Remote control. Here only describes the steps to configure and
enter remote I/O mode based on the example scene.

1. Open Setting > Remote Control page.
2. Set Current working mode to IO-Offline.
3. Select the Blockly project that you have saved before.

4. Click to modify the I/O configuration according to the scene described at the beginning of this
chapter.

5. Click Save to enter remote IO mode.

94

After entering the remote I/O mode, press the start button connected to the robot arm controller, and
the robot arm will start running the project.

95

Appendix A Modbus Register Definition

1 Modbus Introduction
Modbus protocol is a serial communication protocol. The robot system can communicate with external
equipment through this protocol. The external equipment, such as a PLC, is set as the Modbus master, and
the robot system is set as the slave.

Currently Modbus has the following versions:

Modbus-RTU: It is compact, and adopts binary representation of data, using a checksum mode of
cyclic redundancy check.
Modbus-ASCII: It adopts ASCII string representation, which is readable and redundant, using
checksum mode of longitudinal redundancy check.
Modbus-TCP: It adopts TCP connection over TCP/IP. This mode does not require checksum
calculation.

Based on our existing hardware interface, we currently adopt Modbus-TCP scheme.

A Modbus address typically consists of five digits, including the starting datatype code, followed by the
offset address. The Modbus Master protocol library maps standard Modbus addresses to Modbus function
numbers, and reads and writes data from slave stations.

Modbus Master protocol library supports the following addresses:

00001-09999: Digital output (coil)

10001-19999: Digital input (contact)

30001-39999: Data input register (generally analog input)

40001-49999: Data holding register

Modbus data mainly includes four types: coil status, discrete input, input register and holding registers.
Based on the robot memory space, four types of registers are defined: coil, contact (discrete input), input
and holding registers, for data interaction between the external equipment and robot system. Each register
has 4096 addresses. For details, see the description below.

2 Coil register (control robot)

PLC address Script address (Get/SetCoils) Register type Function

00001 0 Bit Start

00002 1 Bit Pause

96

00003 2 Bit Continue

00004 3 Bit Stop

00005 4 Bit Emergency stop

00006 5 Bit Clear alarm

00007 6 Bit Power on

00101 100 Bit Enable

00102 101 Bit Disable

03096 – 10000 3095 – 9999 Bit User-defined

3 Discrete input (robot status)

PLC address Script address (GetInBits) Register type Function

10002 1 Bit Stop status

10003 2 Bit Paused status

10004 3 Bit Running status

10005 4 Bit Alarm status

10006 5 Bit Reserved

10008 7 Bit Remote mode

13096 – 20000 3095 – 9999 Bit User-defined

4 Input register

PLC
address

Data
type

Number
of

values
Byte

Script
address

(GetInRegs)

Register
type Function

31000 unsigned
short 1 2 999 U16 Data validity

31001 unsigned
short 1 2 1000 U16 Total byte length of

message

31002 –
31004

unsigned
short 3 6 1001 – 1003 U16 Reserved

31005 –
31008 uint64 1 8 1004 – 1007 U64 Digital input

31009 –
31012 uint64 1 8 1008 – 1011 U64 Digital output

97

31013 –
31016 uint64 1 8 1012 – 1015 U64 Robot mode

31017 –
31020 uint64 1 8 1016 – 1019 U64 Timestamp

31021 –
31024 uint64 1 8 1020 – 1023 U64 Reserved

31025 –
31028 uint64 1 8 1024 – 1027 U64

Memory structure
test standard value
0x0123 4567 89AB

CDEF

31029 –
31032 double 1 8 1028 – 1031 F64 Reserved

31033 –
31036 double 1 8 1032 – 1035 F64 Speed rate

31037 –
31040 double 1 8 1036 – 1039 F64 Current momentum

of robot

31041 –
31044 double 1 8 1040 – 1043 F64

Control board
voltage

(Not supported by
CCBOX)

31045 –
31048 double 1 8 1044 – 1047 F64

Robot voltage
(Not supported by

CCBOX)

31049 –
31052 double 1 8 1048 – 1051 F64

Robot current
(Not supported by

CCBOX)

31053 –
31056 double 1 8 1052 – 1055 F64 Reserved

31057 –
31060 double 1 8 1056 – 1059 F64 Reserved

31061 –
31072 double 3 24 1060 – 1071 F64 Reserved

31073 –
31084 double 3 24 1072 – 1083 F64 Reserved

31085 –
31096 double 3 24 1084 – 1095 F64 Reserved

31097 –
31120 double 6 48 1096 – 1119 F64 Target joint

position

31121 –
31144 double 6 48 1120 – 1143 F64 Target joint speed

31145 –
31168 double 6 48 1144 – 1167 F64 Target joint

acceleration

31169 –

98

31192

31193 –
31216 double 6 48 1192 – 1215 F64 Target joint torque

31217 –
31240 double 6 48 1216 – 1239 F64 Actual joint

position

31241 –
31264 double 6 48 1240 – 1263 F64 Actual joint speed

31265 –
31288 double 6 48 1264 – 1287 F64 Actual joint current

31289 –
31312 double 6 48 1288 – 1311 F64

TCP sensor force
(Six-dimensional
force sensor needs

to be installed)

31313 –
31336 double 6 48 1312 – 1335 F64

TCP actual
Cartesian

coordinates

31337 –
31360 double 6 48 1336 – 1359 F64 TCP actual

Cartesian speed

31361 –
31384 double 6 48 1360 – 1383 F64

TCP force
(calculate through

joint current)

31384 –
31408 double 6 48 1384 – 1407 F64

TCP target
Cartesian

coordinates

31409 –
31432 double 6 48 1408 – 1431 F64 TCP target

Cartesian speed

31433 –
31456 double 6 48 1432 – 1455 F64 Joint temperature

31456 –
31480 double 6 48 1456 – 1479 F64 Joint control mode

31481 –
31504 double 6 48 1480 – 1503 F64 Joint voltage

31505 –
31506 char 4 4 1504 – 1505 U16 Hand coordinate

system

31507 char 1 1 1506 low
byte U8 User coordinates

31507 char 1 1 1506 high
byte U8 Tool coordinates

31508 char 1 1 1507 low
byte U8 Algorithm queue

running signal

31508 char 1 1 1507 high
byte U8 Algorithm queue

pause signal

99

31509 char 1 1
1508 low

byte U8 Joint speed rate

31509 char 1 1 1508 high
byte U8 Joint acceleration

rate

31510 char 1 1 1509 low
byte U8 Joint jerk rate

31510 char 1 1 1509 high
byte U8 Cartesian position

speed ratio

31511 char 1 1 1510 low
byte U8 Cartesian posture

speed ratio

31511 char 1 1 1510 high
byte U8 Cartesian position

acceleration ratio

31512 char 1 1 1511 low
byte U8 Cartesian posture

acceleration ratio

31512 char 1 1 1511 high
byte U8 Cartesian position

jerk ratio

31513 char 1 1 1512 low
byte U8 Cartesian posture

jerk ratio

31513 char 1 1 1512 high
byte U8 Robot brake status

31514 char 1 1 1513 low
byte U8 Robot enabling

status

31514 char 1 1 1513 high
byte U8 Robot drag status

31515 char 1 1 1514 low
byte U8 Robot drag status

31515 char 1 1 1514 high
byte U8 Robot alarm status

31516 char 1 1 1515 low
byte U8 Robot jog status

31516 char 1 1 1515 high
byte U8 Robot type

31517 char 1 1 1516 low
byte U8 Button board drag

signal

31517 char 1 1 1516 high
byte U8

Button board
enabling signal

(Not supported by
Nova series)

31518 char 1 1 1517 low
byte U8

Button board record
signal

(Not supported by
Nova series)

100

31518 char 1 1 1517 high
byte U8

Button board
playback signal

(Not supported by
Nova series)

31519 char 1 1 1518 low
byte U8

Button board
gripper control

signal
(Not supported by

Nova series)

31519 char 1 1 1518 high
byte U8

Six-dimensional
force online status
(Six-dimensional

force sensor needs
to be installed)

31520 char 1 1 1519 low
byte I8 Collision status

31520 char 1 1 1519 high
byte I8

(SafeSkin) arm
close to pause

status

31521 char 1 1 1520 low
byte I8 (SafeSkin) J4 close

to pause status

31521 char 1 1 1520 high
byte I8 (SafeSkin) J5 close

to pause status

31522 char 1 1 1521 low
byte I8 (SafeSkin) J6 close

to pause status

31522 char 1 1 1521 high
byte I8 Reserved

31523 –
31552 - - - 1522 – 1551 - Reserved

31553 –
31556 double 1 8 1552 – 1555 F64 Reserved

31557 –
31560 uint64 1 8 1556 – 1559 U64 Reserved

31561 –
31584 double 6 48 1560 – 1583 F64 Actual torque

31585 –
31588 double 1 8 1584 – 1587 F64 Load weight (kg)

31589 –
31592 double 1 8 1588 – 1591 F64

X-directional
eccentric distance

(mm)

31593 –
31596 double 1 8 1592 – 1595 F64

Y-directional
eccentric distance

(mm)

31597 – double 1 8 1596 – 1599 F64
Z-directional

eccentric distance

101

31600 double 1 8 1596 – 1599 F64 eccentric distance
(mm)

31601 –
31624 double 6 48 1600 – 1623 F64 User coordinates

31625 –
31648 double 6 48 1624 – 1647 F64 Tool coordinates

31649 –
31652 double 1 8 1648 – 1651 F64 Trajectory playback

running index

31653 –
31676 double 6 48 1652 – 1675 F64

Original value of
current six-

dimentional force
(Six-dimensional

force sensor needs
to be installed)

31677 –
31692 double 4 32 1676 – 1691 F64 [qw,qx,qy,qz]

target quaternion

31693 –
31708 double 4 32 1692 – 1707 F64 [qw,qx,qy,qz]

actual quaternion

31709 –
31721 double 1 24 1708 – 1720 F64 Reserved

1440 Totally 1440 bytes

5 Holding register (interaction between robot and
PLC)

PLC
address

Script address
(Get/SetHoldRegs)

Register
type Function

40101 100 U16 Set the global speed, range: 1–100 (the value
beyond the range will not take effect)

40001 –
41281 0 – 1280 U16 Reserved for palletizing

43095 –
49000 3095 – 8999 U16 User-defined

49001 9000 U16 Current screw index

49002 9001 U16
Specify the screw number to be executed:

The number starts with 1, and 0 means no screw
number is specified

49003 9002 U16
Screw locking result:

Support at most 50 groups; 0 represents failure; 1
represents success; 2 represents None

Number of screws on the locking product

102

49005 –
49054 9004 – 9053 U16

Generate locking result:
Support at most 50 groups; 0 represents failure; 1

represents success; 2 represents None

49055 9054 U16

Alarm code:
0: No alarm; 1: No material in the screw machine
when taking the screws; 2: There are screws in the
screwdriver before screw taking; 3: Screw taking

failure; 4: Abnormal screw locking; 5: The
electrical screwdriver is abnormal

49056 9055 U16 Total number of locked screws

49057 9056 U16 Total number of non-performing locked screws

49058 9057 U16 Total number of locked products

49201 9220 F64 Screw locking torsion (Nm)

49205 9224 F64 Screw locking angle (°)

49209 9228 F64 Screw locking cycle time (s)

49213 –
49412 9232 – 9431 F64 Product locking torsion (Nm);

Support at most 50 groups

49413 –
49612 9432 – 9631 F64 Product locking angle (°)

Support at most 50 groups

103

Appendix B Blockly Commands
B.1 Quick start

B.1.1 Control robot movement
B.1.2 Read and write Modbus register data
B.1.3 Transmit data by TCP communication
B.1.4 Palletize

B.2 Block description
B.2.1 Event
B.2.2 Control
B.2.3 Operator
B.2.4 String
B.2.5 Custom
B.2.6 IO
B.2.7 Motion
B.2.8 Motion advanced configuration
B.2.9 Modbus
B.2.10 TCP

104

Quick start

105

Control robot movement

Scene description

In order to experience how to control the movement of the robot arm through blockly programming, you
can assume the following scene:

When the controller DI1 is ON, the robot moves from P1 to P2 in a linear mode, moves to P4 via P3 in a
arc mode, and then returns along the same way. When the controller DI1 is OFF, the robot arm does not
move.

Please teach P1~P4 first according to the figure above.

Steps for programming

To achieve this scene, you need to edit the program as shown in the figure below.

1. The robot arm moves to the starting point through joint motion (P1).

106

2. Set an unconditional loop to make subsequent commands cycle while the program is running.
3. Judge whether the controller DI1 is ON. The subsequent program wil be executed only when the

controller DI1 is ON. Otherwise, it will directly enter the next loop and reacquire the status of DI1.
4. The robot arm moves to P2 in the linear mode.
5. The robot arm moves to P4 via P3 through the arc motion.
6. The robot arm moves to P2 via P3 through the arc motion (return along the same way).
7. The robot arm moves to P1 in the linear mode, and then enters the next loop (return to Step 3).

107

Read and write Modbus register data

Scene description

To experience how to read and write Modbus data through blockly programming, you can assume the
following scene:

Create a Modbus master for the robot. Connect to the external slave and read the address from the specified
coil register. If the value is 1, the robot moves to P1.

Steps for programming

To achieve this scene, you need to edit the program as shown in the figure below.

1. Create the master station. Set the IP address to the slave address, and the port and ID to the default
values. In this demo the IP is set to robot address, as the robot slave is used here for quick verification.

2. Determine whether the master station is created successfully. The subsequent steps will be executed
only if the creation is successful, otherwise, the program will end directly.

3. If the value of coil register 0 of the robot has been modified, it may affect the subsequent program. So
you need to set the value of coil register 0 to 0 first.

4. Wait for the value of coil register 0 to change to 1.
5. Control the robot to move to P1, which is a user-defined point.
6. Close the master station.

108

Transmit data by TCP communication

Scene description

To experience how to perform TCP communication through blockly programming, you can assume the
following scene:

Create a TCP server for the robot. Wait for the client to connect to the server and send "go" command.
Then the server returns "Go to P1" message and the robot starts to move to P1.

Steps for programming

To achieve this scene, you need to edit the program as shown in the figure below.

1. Create the TCP server (Socket 1). Set the IP (robot IP) and port (custom) .

2. Determine whether the TCP server is created successfully. The subsequent steps will be executed only
if the creation is successful, otherwise, the program will end directly.

109

3. Wait for the client to connect and send the string. Save the received string to the string variable
"tcp_recv". You need to create the string variable in advance.

4. Determine whether the received string includes "go". if it does, execute step 5 and 6. Otherwise,
execute step 7 directly.

5. Send the string "Go to P1" to the client.
6. Control the robot to move to P1, which is a user-defined point.
7. Close the TCP server.

110

Palletize

Scene description

In a case in which the materials to be carried are arranged regularly and evenly spaced, teaching the
position of each material one by one may lead to large errors and low efficiency. Palletizing process can
effectively solve such problems.

Assume that the material needs to be stacked into a cube. You need to manually palletize a target stack
type, and then teach the relevant points:

Safe point (P1): A point the robot must move to when assembling or dismantling stacks for safe
transition. It can be set to a point over the picking point.
Picking point (P2).
Preparation point and target point do not need to be taught one by one. Please refer to Configuring
stack type.

Then assume that a gripper or suction cup has been installed at the end of the robot arm, which is
controlled by controller DO1 to grip or release materials.

Configuring stack type

Drag the pallet block to the programming area, and click the block to open the pallet panel.

111

Pallet dimension

One-dimensional: The materials are arranged in a row, and the total number of materials is equal to
the number in the X direction.

Two-dimensional: The materials are arranged in a square, and the total number of materials is equal to
the product of the number in the X direction and the Y direction.

Three-dimensional: The materials are stacked into a cube, and the total number of materials is equal to
the product of the numbers in three directions.

This section takes the three-dimensional stacking as an example. Here the number of materials in each
direction is set to 10, so this demo contains 1000 materials.

Point configuration

Taking the three-dimensional stack as an example, you need to configure eight points, which correspond to
the material positions on the eight corners of the cube. The control system will automatically calculate the
target point of each material through the eight points and the number of materials, and then perform
palletizing in the order of X -> Y -> Z coordinate axes.

When configuring points, you can select the points that have been taught in the project, or you can click
Custom to obtain the current point of the robot arm. The configured point icon will turn green.

Steps for programming

112

To achieve this scene, you need to edit the program as shown in the figure below.

1. Create pallet1.
2. Create a custom number variable and set it to 1, which is used to record the repeat times.

3. Execute the subsequent commands cyclically, and set the number of times to the total number of
points corresponding to the pallet.

4. The robot moves over the picking point (P1).
5. The robot moves to the picking point (P2).
6. Set DO1 to ON to control the gripper to pick up the material.
7. The robot returns over the picking point (P1).
8. The robot moves to 100mm over the current pallet point.
9. The robot moves to the current pallet point.

10. Set DO1 to OFF to control the gripper to release the material.
11. The robot returns to 100mm over the current pallet point.

113

12. The repeat times is incremented by 1. Return to Step 4.

The program in this section is only a simple example. You can add more IO control and judgment
commands according to the actual condition, such as not performing subsequent actions if the material is
not picked up.

114

Block description

115

Event
The event commands are used as a mark to start running a program.

Start command

Description: It is the mark of the main thread of a program. After creating a new project, there is a Start
block in the programming area by default. Please place other non-event blocks under the Start block to
program.

Limitation: A project can only has one Start block.

Sub-thread start command

Description: It is the mark of the sub-thread of a program. The sub-thread will run synchronously with the
main thread, but the sub-thread cannot call robot control commands. It can only perform variable operation
or I/O control. Please determine whether to use the sub-thread according to the logic requirement.

Limitation: A project can only has five sub-threads.

116

Control
The control blocks are used to control the running path of the program.

Wait until…

Description: The program pauses running, and it continues to run if the parameter is true .

Parameter: Use other hexagonal blocks as the parameter.

Repeat n times

Description: Embed other blocks inside the block, and the embedded block command will be executed
repeatedly for the specified times.

Parameter: number of times the execution is repeated.

Repeat continuously

Description: When other blocks are embedded inside this block, the embedded commands will be

executed repeatedly until meeting .

End repetition

Description: It is used to be embedded inside the execution-repeating blocks. When the program runs to
this block, it will directly end the repetition and execute the blocks after the execution-repeating block.

117

if…then…

Description: If the parameter is true, execute the embedded block. If the parameter is false, jump directly
to the next block.

Parameter: Use other hexagonal blocks which return a Boolean value (true or false) as the parameter.

if…then…else…

Description: If the parameter is true, execute the embedded blocks before "else". If the parameter is false,
execute the embedded blocks after "else".

Parameter: Use other hexagonal blocks which return a Boolean value (true or false) as the parameter.

Repeat until…

Description: Repeatedly execute the embedded block until the parameter is true.

Parameter: Use other hexagonal blocks which return a Boolean value (true or false) as the parameter.

Set label

Description: Set a label, then you can jump to the label through .

118

Parameter: Label name, which must starts with a letter, and special characters such as spaces cannot be
used.

Goto label

Description: When the program runs to the block, it will jump to the specified label directly and execute
the blocks after the label.

Parameter: label name

Fold commands

Description: Fold the embedded blocks. It has no control effect but to make the program more readable.

Parameter: A name to describe the folded blocks

Pause

Description: The program pauses automatically after running to the block. It can continue to run only
through control software or remote control operations.

Set collision detection

Description: Set collision detection. The collision detection level set through this block is valid only when
the project is running, and will restore the previous value after the project stops.

Parameter: Select the sensitivity of the collision detection. You can turn it off or select from level 1 to
level 5. The higher the level is, the more sensitive the collision detection is.

Modify user coordinate system

119

Description: Modify the specified user coordinate system. The modification is valid only when the project
is running, and the coordinate system will restore the previous value after the project stops.

Parameter:

Specify the index of user coordinate system
Specify the parameters of modified user coordinate system

Modify tool coordinate system

Description: Modify the specified tool coordinate system. The modification is valid only when the project
is running, and the coordinate system will restore the previous value after the project stops.

Parameter:

Specify the index of tool coordinate system
Specify the parameters of modified tool coordinate system

Create pallet

Description: Create the stack type of a pallet. See Palletizing for details.

Parameter: : pallet name

Obtain pallet point count

Description: Obtain the number of target points of the specified pallet

Parameter: : pallet name

Obtain pallet point coordinates

Description: Obtain the specified point coordinates of the specified pallet

120

Parameter: :

pallet name
point index, starting from 1

Delay execution

Description: When the program runs to the block, it will pause for a specified time before it continues to
run.

Parameter: pause time of the program

Motion waiting

Description: It is used before or after a motion block to delay the delivery of motion commands or delay
the delivery of the next command after the former motion is completed.

Parameter: delay time to deliver the command

Get system time

Description: Get the current time of the system.

Return: Unix timestamp of the current system time.

121

Operator
The operator commands are used for calculating variables or constants.

Arithmetic command

Description: Perform addition, subtraction, multiplication or division to the parameters.

Parameter:

Fill in both blanks with variables or constants. You can use oval blocks that return numeric values, or
directly enter the value in the blanks.
Select an operator.

Return: Value after operation

Comparison command

Description: Compare the parameters.

Parameter:

Fill in both blanks with variables or constants. You can use oval blocks that return numeric values, or
directly enter values in the blanks.
Select a comparison operator.

Return: It returns true if the comparison result is true, and false if the result is false.

A and B command

Description: Perform and operation to the parameters.

Parameter: Fill in both blanks with variables (using hexagonal blocks).

Return: It returns true if the two parameters are true, and false if any one of them is false.

A or B xommand

122

Description: Perform or operation to the parameters.

Parameter: Fill in both blanks (using hexagonal blocks).

Return: It returns true if any one of the parameters is true, and false if both of them are false.

Not A command

Description: Perform not operation to the parameters.

Parameter: Fill in the blank with a variable (using hexagonal blocks).

Return: It returns false if the parameter is true, and true if the parameter is false.

Get remainder

Description: Get the remainder of parameters.

Parameter: Fill in both blanks with variables or constants. You can use oval blocks that return numeric
values, or directly fill the value in the blanks.

Return: Value after operation

Round-off operation

Description: Perform round-off operation to parameters.

Parameter: Fill in the blank with a variable or constant. You can use oval blocks that return numeric
values, or directly fill the value in the blank.

Return: Value after operation

Monadic operation

Description: Perform various Monadic operations to parameters.

123

Parameter:

Select an operator.

abs
floor
ceiling
sqrt
sin
cos
tan
asin
acos
atan
ln
loh
e^
10^

Fill in the blank with a variable or constant. You can use oval blocks that return numeric values, or
directly fill the value in the blank.

Return: Value after operation

Print

Description: Output the parameters to the console, which is mainly used for debugging.

Parameter:

Select Sync or Async. For Sync, it will print information after all the commands that have been
delivered are executed. For Async, it will print information immediately when the program runs to the
block.
Variables or constants to be output. You can use oval blocks, or directly fill in the blank.

124

String
The string commands include general functions of string and array.

Get character in a certain position of string

Description: Get the character in the specified position of the string.

Parameter:

1st parameter: specify the position of character to be returned in the string
2nd parameter: string, you can use other oval blocks or fill in directly.

Return: character in the specified position of the string

Determine whether String A contains String B

Description: Determine whether the first string contains the second string.

Parameter: Two strings. You can use oval blocks which return string, or fill in directly.

Return: If the first string contains the second string, it returns true, otherwise it returns false.

Connect two strings

Description: Connect two strings into one string. The second string will follow the first string.

Parameter: Two strings to be connected. You can use oval blocks which return string, or fill in directly.

Return: Jointed string.

Get length of string or array

Description: Get the length of the specified string or array. The length of a string refers to how many
characters the string has, and the length of an array refers to how many elements the array has.

125

Parameter: A string or array. You can use oval blocks that return string or array.

Return: length of string or array

Compare two strings

Description: Compare the sizes of two strings according to ACSⅡ codes.

Parameter: Two strings to be compared. You can use oval blocks which return string, or fill in directly.

Return: It returns 0 when string 1 and string 2 are equal, -1 when string 1 is less than string 2, and 1 when
string 1 is greater than string 2.

Convert array to string

Description: Convert the specified array to a string, and the different array elements in the string are
separated by the specified delimiter. For example, if the array is {1,2,3} and the delimiter is |, then the
converted string is "1|2|3".

Parameter:

An array to be converted to string. You can use oval blocks which return string
Delimiter used in conversion

Return: Converted string.

Convert string to array

Description: Convert the specified string to an array, using the specified delimiter to separate strings. For
example, if the array is “1|2|3” and the delimiter is |, then the converted array is {[1]=1,[2]=2,[3]=3}.

Parameter:

A string to be converted to array. You can use oval blocks which return string or fill in directly
Delimiter used in conversion

Return: Converted array.

Get element in a certain position of array

126

Description: Get the element at the specified subscript position in the specified array. The subscript
represents the position of the element in the array. For example, the subscript of 8 in the array {7,8,9} is 2.

Parameter:

Target array, using oval blocks which return array values.
subscript of specified element.

Return: value of the element at the specified position in the array.

Get multiple specified character of string

Description: Get multiple elements at the specified subscript position in the specified array. Get the
element based on the step value within the range of the start and end subscripts.

Parameter:

Target array, using oval blocks which return array values.
Specify the range of elements by start subscript and end subscript.
Step value is used to determine how often elements are obtained. 1 refers to obtaining all, and 2 refers
to obtaining every other element, and so forth.

Return: new array of specified elements.

Set specified character of array

Description: Set the value of the element at the specified position of the array.

Parameter:

target array, using oval blocks that return array values.
subscript of the element.
value of element.

127

Custom
The custom commands are used for creating and managing custom blocks, and calling global variables.

Call global variable

Description: Call global variables set in the control software.

Parameter: Name of a global variable.

Return: Value of the global variable.

Set global variables

Description: Set the value of a specified variable. Please note that the block for setting global variables
and setting custom variables are the same in shape, but have slightly different functions.

Parameter:

Select a variable to be modified.
Value after modification. You can directly fill the value in the blank, or use other oval blocks.

Create variables

Click to create a variable. The variable name must start with a letter and cannot contain special characters
such as Spaces. After creating at least one variable, you will see the following variable blocks in the block
list.

Custom number variable

Description: The newly created custom number variable (default value: nil) is recommended to be used
after assignment. You can also modify the variable name or delete the variable through the variable drop-
down list.

128

Return: variable value

Set value of custom number variable

Description: Set the value of a specified number variable. Please note that the block for setting global
variables and setting custom variables are the same in shape, but have slightly different functions.

Parameter:

Select a variable to be modified.
Value after modification. You can directly fill the value in the blank, or use other oval blocks.

Add value of number variable

Description: Add specified value to a number variable.

Parameter:

Select a variable to be modified.
Added value. You can directly fill the value in the blank, or use other oval blocks. A negative value
refers to value decrease.

Custom string variable

Description: The newly created custom string variable (default value: nil) is recommended to be used after
assignment. You can also modify the variable name or delete the variable through the variable drop-down
list.

Return: variable value

Set value of custom string variable

Description: Set the specified string variable.

Parameter:

129

Select a variable to be modified.
Value after modification. You can directly fill the blank with a string.

Create array

Click to create a custom array. The array name must start with a letter and cannot contain special
characters such as Spaces. After creating at least one array, you will see the following array blocks in the
block list.

Custom array

Description: The newly created custom array is an empty array by default. It is recommended to use it
after assignment. Right-click (PC)/long-press (Android or iOS) the block in the block list to modify the
name of the array or delete the array. You can also modify the name of the currently selected array or
delete the array through the array drop-down list in other array blocks. The check box on the left side of the
array block has no use, which can be ignored.

Return: Array value.

Add variable to array

Description: Add a variable to a specified array. The added variable will be the last item of the array.

Parameter:

Variable to be added. You can directly fill the variable in the blank, or use other oval blocks.
Select an array to be modified.

Delete item of array

Description: Delete an item of a specified array.

Parameter:

Select an array to be modified.

130

Item index. You can directly fill the index in the blank, or use other oval blocks that return numeric
values.

Delete all items of array

Description: Delete all items of the array.

Parameter: Select an array to be modified.

Insert item into array

Description: Insert an item to a specified position of the array.

Parameter:

Select an array to be modified.
insert position. You can directly fill the index in the blank, or use other oval blocks that return
numeric values.
Variable to be added. You can directly fill the variable in the blank, or use other oval blocks.

Replace items of array

Description: Replace an item of the array with a specified variable.

Parameter:

Select an array to be modified.
Item index. You can directly fill the index in the blank, or use other oval blocks that return numeric
values.
Variable after replacement. You can directly fill the variable in the blank, or use other oval blocks.

Get items of array

Description: Get the value of a specified item of the array.

131

Parameter:

Select an array.
Item index. You can directly fill the index in the blank, or use other oval blocks that return numeric
values.

Return: value of specified item

Get number of items in array

Description: Get the number of items in an array.

Parameter: Select an array.

Return: Number of items in the array.

Create function

Click to create a new function. A function is a fixed program segment. You can define a group of blocks
that implement specific functions as a function. Every time you want to use the function, you only need to
call this function with no need to build the same block group repeatedly. A new created function needs to
be declared and defined. After the new function is created successfully, the corresponding function block
will appear in the block list.

1. Declare function

132

In this interface, you need to define the name of the function, and the type, quantity and name of the input
(parameter). The function and parameter names should not contain special characters such as spaces. You
can also add labels to functions, which can be used as comments for functions or inputs.

1. Define function

After completing the function declaration, you will see the definition header block in the programming
area.

You need to program below the header block to define the function.

You can drag out the input in the header block to use in the blocks below, indicating using the input when
actually calling the function as a parameter.

Custom function

Description: The custom function blocks, of which the name and input parameters are defined by the user,
are used to call the defined function. Right-clicking (PC)/long-pressing (App) the block in the block list
can modify the declaration of the function. If you need to delete the function, delete the definition header
block of the function.

133

Create sub-routine

Click to create a new sub-routine. Blockly programming supports embedding and calling sub-routines,
which can be blockly programming and script programming, with a maximum of two embedded levels.
After the new sub-routine is successfully created, the corresponding sub-routine block will appear in the

block list.

After selecting Block programming, you will see the sub-routine block programming page. You can
set the sub-routine description and write the subroutine.

134

After selecting Script programming, you will see the sub-routine script programming window. You
can set the sub-routine description and write the subprogram.

Sub-routine

Blockly sub-routine

Script sub-routine

Description: The sub-routine block, which is defined by the user when creating a sub-routine, is used to
call the saved sub-routine. Right-clicking (PC)/long-pressing (App) the block in the block list can modify
or delete the sub-routine.

135

IO
The IO blocks are used to manage the input and output of the IO terminals of the robot arm. The value
range of the input and output ports is determined by the corresponding number of terminals of the robot
arm. Please refer to the hardware guide of the corresponding robot arm.

Set digital output

Description: Set the on/off status of digital output port.

Parameter:

Select the position of DO port, including controller and tool.
Select DO port index.
Select the output status (ON or OFF)

Set digital output (for sub-thread)

Description: Set the on/off status of digital output port. Please use this block when setting in the sub-
thread.

Parameter:

Select the position of DO port, including controller and tool
Select DO port index
Select the output status (ON or OFF)

Set a group of digital output

Description: Set a group of DO. You can drag the block to the programming area and click to set it.

Parameter:

136

click + or - to increase or decrease the number of DO
Select DO port index
Select the output status (ON or OFF)

Wait digital input

Description: Wait for the specified DI to meet the condition or wait for timeout before executing
subsequent block commands.

Parameter:

Select the position of DI port, including controller and tool.
Select DI port index.
Select the status (ON or OFF)
timeout for waiting (0 means waiting until the condition is met)

Set analog output

Description: Set the value of analog output port.

Parameter:

137

Select analog output port index.
Analog output value. You can directly enter the value in the blank, or use oval blocks that return
numeric values.

Determine digital input status

Description: Determine whether the current status of the specified DI meets the condition.

Parameter:

Select the position of DI port, including controller and tool.
Select DI port index.
Select the status which is regarded as true

Return: If the current status of the specified DI meets the condition, it returns true, otherwise, it returns
false.

Get analog input

Description: Get the value of analog input.

Parameter:

Select a position of analog input, including controller or tool.
Select a port index.

Return: analog input value

138

Motion commands
The motion commands are used to control the movement of the robot arm and set motion-related
parameters.

The motion blocks are all asynchronous commands, that is, after the command is successfully delivered,
the next command will be executed without waiting for the robot to complete the current movement. You
can use sync command if you need to wait for the delivered commands to be executed before executing
subsequent commands.

The point parameters can be selected here after being added on the "Point" page of the project. The motion
blocks also support dragging out the default variable block and replacing it with other oval blocks which
return Cartesian point coordinates.

Advanced configuration

When the preset motion block cannot meet the programming requirements, you can create a block that
controls the robot motion through advanced configuration. The created block will appear in the
programming area. For details, refer to Motion advanced configuration.

Move to target point

Description: Control the robot to move from the current position to the target point. After dragging the
blocks to the programming area, double-click to perform advanced configuration. See Motion advanced
configuration for details.

Parameter:

Select a motion mode, including joint motion (MovJ) and linear motion (MovL). For joint motion, the
trajectory is non-linear, and all joints complete the motion simultaneously.
target point

Move to target point (with offset)

139

Description: Control the robot to move from the current position to a target point after offset. You can set
the current point as the target point.

Parameter:

Select a motion mode, including relative joint motion (RelMovJ) and relative linear motion
(RelMovL).
target point
offset in the X-axis, Y-axis, and Z-axis direction relative to the target point under the Cartesian
coordinate system. unit: mm

Joint offset motion

Description: Control the robot to move a specified offset from the current position.

Parameter: joint offset. unit: °

Arc motion

Description: Control the robot to move from the current position to a target position in an arc interpolated
mode under Cartesian coordinate system. The coordinates of the current position should not be on the
straight line determined by the intermediate point and the end point.

Parameter:

Middle point is an intermediate point to determine the arc.
End point is the target point.

Circle motion

Description: Control the robot arm to move from the current position in an full-circle interpolated mode,
and return to the current position after moving a specified number of circles. The coordinates of the current
position should not be on the straight line determined by the intermediate point and the end point.

Parameter:

Middle point is an intermediate point to determine the entire circle.
End point is used to determine the entire circle.

140

Enter the number of circles for circle movement. Value range: 1~ 999.

Trajectory playback

Description: Control the robot to play back the trajectory. The trajectory should be recorded in Trajectory
playback process.

Parameter:

Select a trajectory file.
Select the moving speed in playback:

uniform speed
0.25x speed
0.5x speed
1x speed
2x speed

Sync command

Description: When the program runs to this command, it will wait for the robotic arm to execute all the
commands that have been delivered before, and then continue to execute subsequent commands.

Set CP ratio

Description: Set the continuous path ratio in motion, that is, when the robot moves from the starting point
to the end point via the intermediate point, whether it passes the intermediate point through right angle or
in curve, as shown below.

141

Parameter: Continuous path ratio. Value range: 0~100.

Set joint speed ratio

Description: Set the speed ratio of joint motion.

Parameter: joint speed ratio, range: 0~100. Actual robot speed = percentage set in blocks × speed in
playback settings × global speed ratio.

Set joint acceleration ratio

Description: Set the acceleration ratio of joint motion.

Parameter: joint acceleration ratio, range: 0~100. Actual robot acceleration = percentage set in blocks ×
acceleration in playback settings × global speed ratio.

Set linear speed ratio

Description: Set the speed ratio of lineal and arc motion.

Parameter:

142

Linear and arc speed ratio (value range: 0~100). Actual robot speed = percentage set in blocks ×
speed in playback settings × global speed ratio.

Set linear acceleration ratio

Description: Set the acceleration ratio of lineal and arc motion.

Parameter:

Linear and arc acceleration ratio (value range: 0~100). Actual robot acceleration = set ratio × value in
playback settings in software × global speed ratio.

Modify coordinates

Description: Modify the value of the specified point in the specified Cartesian coordinate axis.

Parameter:

Select a point.
Select a coordinate axis.
Set coordinate value.

Get coordinates

Description: Get coordinates of a specified point in Cartesian coordinate system.

Parameter: Select a point to obtain its coordinates.

Return: Cartesian coordinates of the specified point

Get coordinates of a specified axis

Description: Get the value of the specified point in the specified Cartesian coordinate axis.

Parameter:

Select the point to get the coordinate value.

143

Select the coordinate dimension.

Return: Value of the specified Cartesian coordinate axis

Get coordinates of current position

Description: Get the value of the TCP current position in the specified coordinate axis under the specified
coordinate system.

Parameter:

Select the coordinate dimension.
Select the user coordinate system and tool coordinate system. The returned value will be transformed
to the value in the corresponding coordinate system.

Return: Value of the TCP current position in the specified coordinate axis under the specified coordinate
system.

144

Motion advanced configuration

Create a block that controls the movement of the robot through advanced configuration. The configuration
includes the block name, motion mode and motion parameters. Different motion modes vary in the motion
parameters to be configured.

Actual robot speed/acceleration = percentage set in commands × speed/acceleration in playback settings ×
global speed ratio.

MovJ

Motion mode: Move from the current position to the target position under the Cartesian coordinate system
in a joint-interpolated mode.

145

Basic setting:

P: target point, which can be selected here after being added in the Point page, or defined in this page.

Advanced setting:

Select and configure the advanced parameters as required.

Speed: velocity rate, range: 1~100.
Acceleration (Accel): acceleration rate, range: 1~100.
CP: set continuous path in motion, range: 0~100. See Continuous path (CP) at the end of this section
for details.
Process I/O settings: When the robot arm moves to the specified distance or percentage, the specified
DO will be triggered. When the distance is positive, it refers to the distance away from the starting
point; and when the distance is negative, it refers to the distance away from the target point. You can
click "+" below to add a process IO, and click "-" on the right to delete the corresponding process IO.

146

MovL

Motion mode: Move from the current position to the target position under the Cartesian coordinate system
in a linear interpolated mode.

Basic setting: P: target point, which can be selected here after being added in the Point page, or defined in
this page.

147

Advanced setting:

Select and configure the advanced parameters as required.

Speed: velocity rate, range: 1~100.
Acceleration (Accel): acceleration rate, range: 1~100.
CP: set continuous path in motion, range: 0~100. See Continuous path (CP) at the end of this section
for details.
Process I/O settings: When the robot arm moves to the specified distance or percentage, the specified
DO will be triggered. When the distance is positive, it refers to the distance away from the starting
point; and when the distance is negative, it refers to the distance away from the target point. You can
click "+" below to add a process IO, and click "-" on the right to delete the corresponding process IO.

JointMovJ

148

Motion mode: Move from the current position to the target joint angle in a joint-interpolated mode.

Basic setting: target joint angle, which can be defined through teaching.

Advanced setting:

Select and configure the advanced parameters as required.

Speed: velocity rate, range: 1~100.
Acceleration (Accel): acceleration rate, range: 1~100.
CP: set continuous path in motion, range: 0~100. See Continuous path (CP) at the end of this section
for details.

RelMovJ

149

Motion mode: Move from the current position to the target offset position under the Cartesian coordinate
system in a joint-interpolated mode.

Basic setting: X-axis, Y-axis and Z-axis offset under the Cartesian coordinate system, unit: mm

Advanced setting:

Select and configure the advanced parameters as required.

Speed: velocity rate, range: 1~100.
Acceleration (Accel): acceleration rate, range: 1~100.
CP: set continuous path in motion, range: 0~100. See Continuous path (CP) at the end of this section

for details.

RelMovL

Motion mode: Move from the current position to the target offset position under the Cartesian coordinate
system in a linear interpolated mode.

150

Basic setting: X-axis, Y-axis and Z-axis offset under the Cartesian coordinate system, unit: mm

Advanced setting:

Select and configure the advanced parameters as required.

Speed: velocity rate, range: 1~100.
Acceleration (Accel): acceleration rate, range: 1~100.
CP: set continuous path in motion, range: 0~100. See Continuous path (CP) at the end of this section
for details.

Arc

Motion mode: Move from the current position to the target position in an arc interpolated mode under the
Cartesian coordinate system. The current position should not be on a straight line determined by point A
and point B.

151

Basic setting:

Intermediate point A coordinate: intermediate point coordinates of arc
End point B coordinate: target point coordinates. The two points can be selected here after being
added in the Points page, or defined in this page.

Advanced setting:

Select and configure the advanced parameters as required.

Speed: velocity rate, range: 1~100.
Acceleration (Accel): acceleration rate, range: 1~100.
CP: set continuous path in motion, range: 0~100. See Continuous path (CP) at the end of this section
for details.

Circle

Motion mode: Move from the current position in a circle interpolated mode, and return to the current
position after moving specified circles. The current position should not be on a straight line determined by
point A and point B, and the circle determined by the three points cannot exceed the movement range of
the robot arm.

152

Basic setting:

Intermediate point A coordinate: It is used to determine the intermediate point coordinates of the
circle.
End point B coordinate: It is used to determine the end point coordinates of the circle. The two points
can be selected here after being added in the Points page, or defined in this page.
Number of circles: circles of Circle motion, range: 1~999.

Advanced setting:

Select and configure the advanced parameters as required.

Speed: velocity rate, range: 1~100.
Acceleration (Accel): acceleration rate, range: 1~100.
CP: set continuous path in motion, range: 0~100. See Continuous path (CP) at the end of this section
for details.

Continuous path (CP)

153

The continuous path (CP) means when the robot arm moves from the starting point to the end point via the
middle point, whether it transitions at a right angle or in a curved way when passing through the middle
point, as shown below.

154

Modbus commands
The Modbus commands are used for operations related to Modbus communication.

Create Modbus master

Description: Create Modbus master, and establish the connection with slave.

Parameter:

IP address of Modbus slave
port of Modbus slave
ID of Modbus slave, range: 1~4

Get result of creating Modbus master

Description: Get the result of creating Modbus master.

Return:

0: Modbus master has been created successfully.
1: As there are 4 created master stations, a new one failed to be created.
2: Modbus master failed to be initialized. It is recommended to check whether the IP, port and
network is normal.
3: Modbus slave failed to be connected. It is recommended to check whether the slave is established
properly and whether the network is normal.

Wait for input register

Description: Wait for the value of the specified address of input register to meet the condition before
executing the next command.

Parameter:

Address: Starting address of the input registers. Value range: 0~9998.

155

Data type
U16: 16-bit unsigned integer (two bytes, occupy one register)
U32: 32-bit unsigned integer (four bytes, occupy two registers)
F32: 32-bit single-precision float number (four bytes, occupy two registers)
F64: 64-bit double-precision float number (eight bytes, occupy four registers).

condition that the value is required to meet

Wait for holding register

Description: Wait for the value of the specified address of holding register to meet the condition before
executing the next command.

Parameter:

Address: Starting address of the holding registers. Value range: 0~9998.
Data type

U16: 16-bit unsigned integer (two bytes, occupy one register)
U32: 32-bit unsigned integer (four bytes, occupy two registers)
F32: 32-bit single-precision float number (four bytes, occupy two registers)
F64: 64-bit double-precision float number (eight bytes, occupy four registers).

condition that the value is required to meet

Wait for discrete input register

Description: Wait for the value of the specified address of discrete input register to meet the condition
before executing the next command.

Parameter:

Address: Starting address of the discrete input registers. Value range: 0~9999.
condition that the value is required to meet

Wait for coil register

Description: Wait for the value of the specified address of input register to meet the condition before
executing the next command.

156

Parameter:

Address: Starting address of the coil registers. Value range: 0~9999.
condition that the value is required to meet

Get input register

Description: Get the value of the specified address of input register.

Parameter:

Address: Starting address of the input registers. Value range: 0~9998.
Data type

U16: 16-bit unsigned integer (two bytes, occupy one register)
U32: 32-bit unsigned integer (four bytes, occupy two registers)
F32: 32-bit single-precision float number (four bytes, occupy two registers)
F64: 64-bit double-precision float number (eight bytes, occupy four registers).

Return: input register value

Get holding register

Description: Get the value of the specified address of holding register.

Parameter:

Address: Starting address of the holding registers. Value range: 0~9998.
Data type

U16: 16-bit unsigned integer (two bytes, occupy one register)
U32: 32-bit unsigned integer (four bytes, occupy two registers)
F32: 32-bit single-precision float number (four bytes, occupy two registers)
F64: 64-bit double-precision float number (eight bytes, occupy four registers).

Return: holding register value

Get discrete input

Description: Get the value of the specified address of discrete input register.

Parameter: Starting address of the discrete input register. Value range: 0~9999.

157

Return: discrete input value

Get coil register

Description: Get the value of the specified address of coil register.

Parameter: Starting address of the coil register. Value range: 0~9999.

Return: coil register value

Get multiple values of coil register

Description: Get multiple values of the specified address of coil register.

Parameter:

Starting address of the coils register. Value range: 0~9999.
Number of register bits. The maximum value is 216 (CR series) or 984 (Nova series) when
communicating with the slave via the tool I/O interface, and 2008 for the other scenarios.

Return: coil register values stored in table. The first value in table corresponds to the value of coil register
at the starting address.

Get multiple values of holding register

Description: Get multiple values of the specified address of holding register.

Parameter:

Starting address of the input registers. Value range: 0~9998.
Number of values to be read.
Data type

U16: 16-bit unsigned integer (two bytes, occupy one register). Up to 13 values (CR series) or 61
values (Nova series) are read continuously when communicating with the slave via the tool I/O
interface, and up to 125 values are read continuously for the other scenarios.
U32: 32-bit unsigned integer (four bytes, occupy two registers). Up to 6 values (CR series) or 30
values (Nova series) are read continuously when communicating with the slave via the tool I/O
interface, and up to 62 values are read continuously for the other scenarios.
F32: 32-bit single-precision float number (four bytes, occupy two registers). Up to 6 values (CR

158

series) or 30 values (Nova series) are read continuously when communicating with the slave via
the tool I/O interface, and up to 62 values are read continuously for the other scenarios.
F64: 64-bit double-precision float number (eight bytes, occupy four registers). Up to 3 values
(CR series) or 15 values (Nova series) are read continuously when communicating with the slave
via the tool I/O interface, and up to 31 values are read continuously for the other scenarios.

Return: holding register values stored in table. The first value in table corresponds to the value of holding
register at the starting address.

Set coil register

Description: Write the value to the specified address of coil register.

Parameter:

Starting address of the coil register. Value range: 6~9999.
Values written to the coil register. Value range: 0 or 1.

Set multiple coil register

Description: Write multiple values to the specified address of coil register.

Parameter:

Starting address of the coil register. Value range: 0~9999.
Number of value bits to be written.
Values written to the coil register. Fill in an array with the same length as the number of bits written,
each of which can only be 0 or 1. Up to 440 values are written at a time when communicating with the
slave via the tool I/O interface, and up to 1976 values are written at a time for the other scenarios.

Set holding register

Description: Write the value to the specified address of holding register.

Parameter:

Starting address of the input registers. Value range: 0~9998.
Value to be written, which should correspond to the selected data type.

159

Data type
U16: 16-bit unsigned integer (two bytes, occupy one register). Up to 27 values are written
continuously when communicating with the slave via the tool I/O interface, and up to 123 values
are written continuously for the other scenarios.
U32: 32-bit unsigned integer (four bytes, occupy two registers). Up to 13 values are written
continuously when communicating with the slave via the tool I/O interface, and up to 61 values
are written continuously for the other scenarios.
F32: 32-bit single-precision float number (four bytes, occupy two registers). Up to 13 values are
written continuously when communicating with the slave via the tool I/O interface, and up to 61
values are written continuously for the other scenarios.
F64: 64-bit double-precision float number (eight bytes, occupy four registers). Up to 6 values are
written continuously when communicating with the slave via the tool I/O interface, and up to 30
values are written continuously for the other scenarios.

Close Modbus master

Description: Close the Modbus master, and disconnect from all slaves.

160

TCP commands
The TCP commands are used for operations related to TCP.

Connect SOCKET

Description: Create a TCP server to communicate with the specified TCP server.

Parameter:

Select the SOCKET index (4 TCP communication links at most can be established).
IP address of TCP server.
TCP server port.

Get result of connecting SOCKET

Description: Get the result of TCP communication connection.

Parameter: Select SOCKET index.

Return: It returns 0 for successful connection, and 1 for failing to be connected.

Create SOCKET

Description: Create a TCP server to wait for connection from the client.

Parameter:

Socket index (4 TCP communication links at most can be established).
IP address of TCP server.
TCP server port: When the robot serves as a server, do not use the following ports that have been
occupied by the system.

22, 23, 502 (0~1024 ports are linux-defined ports, which has a high possibility of being occupied.
Please avoid to use),

5000~5004, 6000, 8080, 11000, 11740, 22000, 22002, 29999, 30003, 30004, 60000, 65500~65515

161

Get result of creating SOCKET

Description: Get the result of creating TCP server.

Parameter: Select SOCKET index.

Return: It returns 0 for successful creation, and 1 for failing to be created.

Close SOCKET

Description: Close specified SOCKET, and disconnect the communication link.

Parameter: Select SOCKET index.

Get variables

Description: Get variables through TCP communication and save it.

Parameter:

Socket index
variable type: string or number.
Name is used for saving received variables, using created variable blocks
Waiting time: if the waiting time is 0, it will wait until it gets variables.

Send variables

Description: Send variables through TCP communication.

Parameter:

Socket index.
data to be sent. You can use oval blocks that return string or numeric values, or directly fill in the
blank.

Get result of sending variables
162

Description: Get the result of sending variables.

Parameter: Socket index.

Return: It returns 0 if the variable is sent, and 1 if the variable failed to be sent

163

Appendix C Script Commands
C.1 Lua basic grammar
C.2 Command description

164

Lua basic grammar

165

Variable and data type
If you want to learn related knowledge of Lua programming systematically, please search for Lua
tutorials on the Internet. This guide only lists some of the basic Lua syntax for your quick reference.

Variables are used to store values, pass values as parameters or return values as results. Variables are
assigned with "=".

Variables in Lua are global variables by default unless explicitly declared as local variables using "local".
The scope of local variables is from the declaration location to the end of the block in which they are
located.

a = 5 -- global variable
local b = 5 -- local variable

Variable names can be a string made up of letters, underscores and numbers, which cannot start with a
number. The keywords reserved by Lua cannot be used as a variable name.

For Lua variables, you do not need to define their types. After you assign a value to the variable, Lua will
automatically judge the type of the variable according to the value.

Lua supports a variety of data types, including number, boolean, string and table. The array in Lua is a type
of table.

There is also a special data type in Lua: nil, which means void (without any valid values). For example, if
you print an unassigned variable, it will output a nil value.

Number

The number in Lua is a double precision floating-point number and supports various operations. The
following format are all regarded as a number:

2
2.2
0.2
2e+1
0.2e-1
7.8263692594256e-06

Boolean

The boolean type has only two optional values: true and false. Lua treats false and nil as false, and others
as true including number 0.

String

166

A string can be made up of digits, letters, and/or underscores. Strings can be represented in three ways：

Characters between single quotes.
Characters between double quotes.
characters between [[and]]

When performing arithmetic operations on a string of numbers, Lua attempts to convert the string of
numbers into a number.

Lua provides many functions to support the operations of strings.

Function Description

string.upper (argument) Convert to uppercase letters

string.lower (argument) Convert to lowercase letters

string.gsub (mainString,
findString,replaceString,num)

Replace characters in a string. MainString is the source string,
findString is the characters to be replaced, replaceString is the
replacement characters, and num is the number of substitutions
(can be ignored)

string.find (str, substr, [init,
[end]])

Search for the specified content substr in a target string str. If a
matching substring is found, the starting and ending indexes of the
substring are returned, and nil is returned if none exists

string.reverse(arg) The string is reversed

string.format(...) Returns a formatted string similar to printf

string.char(arg) and
string.byte(arg[,int])

char is used to convert integer numbers to characters and
concatenate them
byte is used to convert characters to integer values

string.len(arg) Get the length of a string

string.rep(string, n) Copy the string, n indicates the number of replication

.. Used to link two strings

string.gmatch(str, pattern)

It's an iterator function. Each time this function is called, it returns
the next substring found in the str that matches the pattern
description. If the substring described by pattern is not found, the
iterator returns nil

string.match(str, pattern, init)

Search for the specified content that matches the description of
Pattern in a target string str. Init is an optional parameter that
specifies the starting index for the search, which defaults to 1. Only
the first matching in the source str is found. If a matching character
is found, the matching string is returned. If no capture flag is set,
the entire matching string is returned. Return nil if there is no
successful matching.

string.sub(s, i [, j])
Used to intercept strings. s is the source string to be truncated, i is
the start index, j is the end index, and the default is -1, indicating
the last character.

Example:

167

str = "Lua"
print(string.upper(str)) --Convert to uppercase letters, and print the result: LUA
print(string.lower(str)) --Convert to lowercase letters, and print the result: lua
print(string.reverse(str)） --The string is reversed, and print the result: aul
print(string.len("abc")) --Calculate the length of the string ABC, and print the result:
 3
print(string.format("the value is: %d",4)) --Print the result: the value is:4
print(string.rep(str,2)) --Copy the string twice and print the result: LuaLua
string1 = "cn."
string2 = "dobot"
string3 = ".cc"
print("Address: ",string1..string2..string3) --Use .. to connect strings，and print the resu
lt: Address: cn.dobot.cc

string1 = [[aaaa]]
print(string.gsub(string1,"a","z",3)) --Replace in a string and print the result: zzza

print(string.find("Hello Lua user", "Lua", 1)) --Search for Lua in the string and return th
e starting and ending index of the substring, printing the result: 7，9

sourcestr = "prefix--runoobgoogletaobao--suffix"
sub = string.sub(sourcestr, 1, 8) --Get the first through eighth characters of t
he string
print("\n result", string.format("%q", sub)) --Print: result: "prefix--"

Table

A table is a group of data with indexes.

The simplest way to create a table is to use {}, which creates an empty table. This method initializes
the table directly.
A table can use associative arrays. The index of an array can be any type of data, but the value cannot
be nil.
The size of a table is not fixed and can be expanded as required.
The symbol "#" can be used to obtain the length of a table.

 tbl = {[1] = 2, [2] = 6, [3] = 34, [4] =5}
 print("tbl length", #tbl) -- Print the result: 4

Lua provides many functions to support the operation of table.

Function Description

table.concat
(table [, sep [,
start [,
end]]])

The table.concat () function lists all elements of the specified array from start to
end, separated by the specified separator (sep)

table.insert

168

(table, [pos,]
value)

optional parameter, which defaults to the end of the table.

table.remove
(table [, pos])

Return the element in the table at the specified position (pos), the element that
follows will be moved forward. pos is an optional parameter and defaults to the
table length, which is deleted from the last element.

table.sort
(table [,
comp])

The elements in the table are sorted in ascending order.

Example 1:

fruits = {} --initialize an table
fruits = {"banana","orange","apple"} --assign for the table

 print("String after concatenation",table.concat(fruits,", ", 2,3)) --Gets the element of t
he specified index from the table and concatenate them, String after concatenation orange, app
le

 --Insert element at the end
 table.insert(fruits,"mango")
 print("The element with index 4 is",fruits[4]) --print the result: The element with inde
x 4 is mango

 -- Insert the element at index 2
 table.insert(fruits,2,"grapes")
 print("The element with index 2 is",fruits[2]) --print the result: The element with inde
x 2 is grapes

 print("The last element is",fruits[5]) --print the result: The last element is mango
 table.remove(fruits)
 print("The last element after removal is",fruits[5]) --print the result: The last element
after removal is nil

Example 2:

fruits = "banana","orange","apple","grapes"}
print("Before")
for k,v in ipairs(fruits) do
 print(k,v) --print the result: banana orange apple grapes
end
--In ascending order
table.sort(fruits)
print("After")
for k,v in ipairs(fruits) do
 print(k,v) --print the result: apple banana grapes orange
end

Array

169

An array is a collection of elements of the same data type arranged in a certain order. It can be one-
dimensional or multidimensional. The index of an array can be represented as an integer, and the size of
the array is not fixed.

One-dimensional array: The simplest array with a logical structure of a linear table.
Multidimensional array: An array contains an array or the index of a one-dimensional array
corresponds to an array.

Example 1: One-dimensional array can be assigned or read through the for loop command. An integer
index is used to access an array element. If the index has no value then the array returns nil.

array = {"Lua", "Tutorial"} --Create a one-dimensional array
for i= 0, 2 do
 print(array[i]) --Print the result：nil Lua Tutorial
end

In Lua, array indexes start at 1 or 0. Alternatively, you can use a negative number as an index of an array.

array = {}
for i= -2, 2 do
 array[i] = i*2+1 --Assign values to a one-dimensional array
end
 for i = -2,2 do
 print(array[i]) --Print the result：-3 -1 1 3 5
 end

Example 2: An array of three rows and three columns

-- initialize an array
array = {}
 for i=1,3 do
 array[i] = {}
 for j=1,3 do
 array[i][j] = i*j
 end
 end

 -- Access an array
 for i=1,3 do
 for j=1,3 do
 print(array[i][j]) --Print the result：1 2 3 2 4 6 3 6 9
 end
 end

170

Operator
Arithmetic Operator

Command Description

+ Addition

- Subtraction

* Multiplication

/ Floating point division

// Floor division

% Remainder

^ Exponentiation

& And operator

\ OR operator

~ XOR operator

<< Left shift operator

>> Right shift operator

Example

a=20
b=5
print(a+b) --Print the results for a plus b: 25
print(a-b) --Print the result of a minus b: 15
print(a*b) --Print the result of a times b: 100
print(a/b) --Print the result of a divided by b: 4
print(a//b) --Print the result of a divisible by b: 4
print(a%b) --Print the remainder of a divided by b: 0
print(a^b) --Print the results for the b-power of a: 3200000
print(a&b) --Print the results of a And b: 4
print(a|b) --Print the results of a OR b: 21
print(a~b) --Print the results of a XOR b: 17
print(a<<b) --Print the result of a shift left b: 640
print(a>>b) --Print the result of a shift right b: 0

Relational Operator

Command Description

== Equal

171

~= Not equal

<= Equal or less than

>= Equal or greater than

< Less than

> Greater than

Example

a=20 --Create variable a
b=5 --Create variable b
print(a==b) --Determine whether a is equal to b：false
print(a~=b) --Determine whether a is not equal to b：true
print(a<=b) --Determine whether a is less than or equal to b：false
print(a>=b) --Determine whether a is greater than or equal to b：true
print(a<b) --Determine whether a is less than b：false
print(a>b) --Determine whether a is greater than b：true

Logical Operator

Command Description

and Logical AND operator, the result is true if both sides are true, and false if either side
is false

or Logical OR operator, the result is true if one side is true, or false if either side is false

not Logical NOT operator, that is, the judgment result is directly negative

Example

a=true
b=false
print(a and b) --True and false, the result is false
print(a or b) --True or false, the result is true
print(20 > 5 not true) --True and untrue, the result is false

172

Process control

Command Description

if…then…
elseif…
then…
else…end

Conditional command (if). Determine whether the conditions are valid from top to
bottom. If a condition judgment is true, the corresponding code block is executed, and
the subsequent condition judgments are directly ignored and no longer executed

while…
do…end

Loop command (while). When the condition is true, make the program execute the
corresponding code block repeatedly. The condition is checked for true before the
statement is executed

for…do…
end

Loop command (for), execute the specified statement repeatedly, and the number of
repetitions can be controlled in the for statement

repeat…
until() Loop command (repeat), the loop repeats until the specified condition is true

Example

1.Conditional command (if)

a = 100;
b = 200;
--[Check conditions --]
if(a == 100)
then
 --[Execute the following code if the condition is true--]
 if(b == 200)
 then
 --[Execute the following code if the condition is true--]
 print("This is a: ", a);
 print("This is b: ", b);
 end
end

2.Loop command (while)

a=10
while(a < 20)
do
 print("This is a: ", a)
 a = a+1
end

3.Loop command (for)

for i=10,1,-1 do

173

 print(i)
end

4.Loop command (repeat)

a = 10
repeat
 print("This is a: ", a)
 a = a + 1
until(a > 15)

174

Command description

175

General description

Motion mode

The motion modes of the robot include the following types.

Joint motion

The robot arm plans the motion of each joint according to the difference between the current joint angle
and the joint angle of the target point, so that each joint completes the motion at the same time. The joint
motion does not constrain the trajectory of TCP (Tool Center Point), which is generally not a straight line.

As the joint motion is not limited by the singularity position (see the corresponding hardware guide for
details), if there is no requirement for the motion trajectory, or the target point is near the singularity
position, it is recommended to use joint motion.

Linear motion

The robot arm plans the motion trajectory according to the current posture and the posture of the target
point, so that the TCP motion trajectory is a straight line, and the posture of the end changes uniformly
during the movement.

When the trajectory may pass through the singularity position, an error will be reported when the linear
motion command is delivered to the robot arm. It is recommended to re-plan the point or use joint motion
near the singularity position.

Arc motion

The robot arm determines an arc or a circle through three non-collinear points: the current position, P1 and
P2. The posture of the end of the robot arm during the movement is calculated by the posture interpolation
of the current point and P2, and the posture of P1 is not included in the operation (i.e, the posture of the
robot arm when it reaches P1 during the movement may be different from the taught posture).

176

When the trajectory may pass through the singularity position, an error will be reported when the arc
motion command is delivered to the robot arm. It is recommended to re-plan the point or use joint motion
near the singularity position.

Point parameters

The point parameters in the commands generally use the taught point in the Points page, and it can be
called directly using the name of taught point. The taught point is actually saved as a constant in the
background in the following format.

--[[
 name: name of taught point
 joint: joint coordinates of taught point
 tool: tool coordinate system index in hand guiding
 user: user coordinate system index in hand guiding
 pose: posture variable value of taught point
--]]
{
 name = "name",
 joint = {j1, j2, j3, j4, j5, j6},
 tool = index,
 user = index,
 pose = {x, y, z, rx, ry, rz}
}

In addition to the taught point, users can also define the Cartesian coordinate points or joint coordinate
points as the point parameters, see the parameter description of each command for details.

Cartesian coordinate points:

{pose = {x, y, z, rx, ry, rz} }

Joint coordinate points:

{joint = {j1, j2, j3, j4, j5, j6} }

177

Speed parameters

The Speed/SpeedS and Accel/AccelS in the optional parameters are used to specify the speed and
acceleration rate when the robot arm executes the motion command.

Robot actual motion speed/acceleration = maximum speed/acceleration x global speed x command r
ate

The maximum acceleration/velocity is limited by Playback Setting, which can be viewed and modified in
"Motion parameter" page in the software.

The global speed rate can be set through the control software or the SpeedFactor command.

The command rate is carried by the optional parameters of the motion commands. When the
acceleration/velocity rate is not specified through the optional parameters, the value set in the motion
parameters is used by default (see Speed, Accel, SpeedS, AccelScommands for details, and the default
value is 100 when the command setting is not called).

Example:

Accel(50) -- Set the default acceleration of joint motion to 50%
Speed(60) -- Set the default speed of joint motion to 60%
AccelS(70) -- Set the default acceleration of linear motion to 70%
SpeedS(80) -- Set the default speed of linear motion to 80%

-- Global speed rate: 20%

Go(P1) -- Move to P1 at the acceleration of (maximum joint acceleration x 20% x 50%) and speed
 of (maximum joint speed x 20% x 60%) through the joint motion
Go(P1,"Speed = 40, Accel = 90") -- Move to P1 at the acceleration of (maximum joint accelerati
on x 20% x 30%) and speed of (maximum joint speed x 20% x 80%) through the joint motion

Move(P1) -- Moves to P1 at the acceleration of (maximum Cartesian acceleration x 20% x 70%) an
d speed of (maximum Cartesian speed x 20% x 80%) in the linear mode
Move(P1,"SpeedS = 40, AccelS = 90") -- Moves to P1 at the acceleration of (maximum Cartesian
acceleration x 20% x 40%) and speed of (maximum Cartesian speed x 20% x 90%) in the linear mode

Immediate command and Queue command

The commands provided by Dobot are divided into immediate command and queue command.

Immediate command is executed immediately once it is issued.

Queue command is not executed immediately after it is issued, but enters the background algorithmic
queue and wait to be executed.

178

The background algorithm queue will not block the thread. If the immediate command is called after the
queue command, the immediate command may be executed before the queue command is completed, such
as the following example:

Go(P1) -- Queue command
local currentPose = GetPose() -- Immediate command

In this example, the point that GetPose() gets is not P1, but a process point in motion.

If you want to make sure that all the previous commands have been executed when executing the
immediate command, you can call the Sync () command before calling the immediate command, which
will block the program from executing until all the previous commands are fully executed, such as the
following example:

Go(P1) -- Queue command
Sync()
local currentPose = GetPose() -- Immediate command

In this example, the point that GetPose() gets is P1.

179

Motion
The motion commands is used to control the movement of the robot arm. The commands in this group are
all queue commands.

Go

Command:

Go(P,"User=1 Tool=2 CP=1 Speed=50 Accel=20 SYNC=1")

Description:

Move from the current position to a target position under the Cartesian coordinate system in a point-to-
point mode. The trajectory of joint motion is not linear, and all joints complete the motion at the same time.

Required parameter:

P: target point, which is user-defined or obtained from the Point page. Only Cartesian coordinate points are
supported.

Optional parameter:

User: user coordinate system index, which can be used here after being added in Settings.
Tool: tool coordinate system index, which can be used here after being added in Settings.
CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
Speed: velocity rate, range: 1 - 100.
Accel: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).

SYNC=0: asynchronous execution, which means returning immediately after being called,
regardless of the execution process.
SYNC=1: synchronous execution. which means not returning after being called until the
command is executed completely.

Example:

Go(P1)

The robot moves to P1 in the point-to point mode with the default setting.

Move

Command:

180

Move(P,"User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1 STOP=1")

Description:

Move from the current position to a target position under the Cartesian coordinate system in a linear mode.

Required parameter:

P: target point, which is user-defined or obtained from the Point page. Only Cartesian coordinate points are
supported.

Optional parameter:

User: user coordinate system index, which can be used here after being added in the Settings.
Tool: tool coordinate system index, which can be used here after being added in the Settings.
CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
SpeedS: velocity rate, range: 1 - 100.
AccelS: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).

SYNC=0: asynchronous execution, which means returning immediately after being called,
regardless of the execution process.
SYNC=1: synchronous execution. which means not returning after being called until the
command is executed completely.

STOP: abort the motion. Specify the DI index. When the specified DI changes to ON during the
execution of this motion command, the robot immediately aborts the current motion and directly
executes the next command. When this parameter is set, the SYNC parameter setting is invalid and
defaults to 1.

Example:

Move(P1)

The robot arm moves to P1 in a linear mode with the default setting.

Move(P1,"STOP=3")
Move(P2)

The robot arm moves to P1 in a linear mode. When DI3 changes into ON during the motion, it stops
moving to P1 immediately and turns to move to P2 in a linear mode.

MoveJ

Command:

181

MoveJ(P,"CP=1 Speed=50 Accel=20 SYNC=1")

Description:

Move from the current position to a target joint angle in a point-to-point mode (joint motion).

Required parameter:

P: target point, which can only be defined through joint angle.

Optional parameter:

CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
Speed: velocity rate, range: 1 - 100.
Accel: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).

SYNC=0: asynchronous execution, which means returning immediately after being called,
regardless of the execution process.
SYNC=1: synchronous execution. which means not returning after being called until the
command is executed completely.

Example:

local P = {joint={0,-0.0674194,0,0,0,0}}
MoveJ(P)

Define the joint coordinate point P. Move the robot to P with the default setting.

Circle3

Command:

Circle3(P1,P2,Count,"User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1")

Description:

Move from the current position in a circle interpolated mode, and return to the current position after
moving specified circles. As the circle needs to be determined through the current position, P1 and P2, the
current position should not be on a straight line determined by P1 and P2, and the circle determined by the
three points cannot exceed the movement range of the robot arm.

Required parameter:

P1: middle point, which is user-defined or obtained from the Point page. Only Cartesian coordinate
points are supported.
P2: end point, which is user-defined or obtained from the Point page. Only Cartesian coordinate

182

points are supported.
Count: number of circles, range: 1 - 999.

Optional parameter:

User: user coordinate system index, which can be used here after being added in Settings.
Tool: tool coordinate system index, which can be used here after being added in Settings.
CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
SpeedS: velocity rate, range: 1 - 100
AccelS: vcceleration rate, range: 1 - 100
SYNC: synchronization flag, range: 0 or 1 (default value: 0).

SYNC=0: asynchronous execution, which means returning immediately after being called,
regardless of the execution process.
SYNC=1: synchronous execution. which means not returning after being called until the
command is executed completely.

Example:

Go(P1)
Circle3(P2,P3,1)

The robot arm moves to P1, and then moves a full circle determined by P1, P2 and P3.

Arc3

Command:

Arc3(P1,P2,"User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1")

Description:

Move from the current position to a target position in an arc interpolated mode under the Cartesian
coordinate system. As the arc needs to be determined through the current position, P1 and P2, the current
position should not be on a straight line determined by P1 and P2.

Required parameter:

P1: middle point, which is user-defined or obtained from the Point page. Only Cartesian coordinate
points are supported.
P2: target point, which is user-defined or obtained from the Point page. Only Cartesian coordinate
points are supported.

Optional parameter:

User: user coordinate system index, which can be used here after being added in the Settings.
Tool: tool coordinate system index, which can be used here after being added in the Settings.

183

CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
SpeedS: velocity rate, range: 1 - 100
AccelS: acceleration rate, range: 1 - 100
SYNC: synchronization flag, range: 0 or 1 (default value: 0).

SYNC=0: asynchronous execution, which means returning immediately after being called,
regardless of the execution process.
SYNC=1: synchronous execution. which means not returning after being called until the
command is executed completely.

Example:

Go(P1)
Arc3(P2,P3)

The robot moves to P1, and then moves to P3 via P2 in the arc interpolated mode.

GoIO

Command:

GoIO(P,{ {Mode,Distance,Index,Status},{Mode,Distance,Index,Status}...}, "User=1 Tool=2 CP=1 Sp
eed=50 Accel=20 SYNC=1")

Description:

Move from the current position to a target position in a point-to-point mode (joint motion) under the
Cartesian coordinate system, and set the status of digital output port when the robot is moving.

Required parameter:

P: target point, which is user-defined or obtained from the Point page. Only Cartesian coordinate
points are supported.
Digital output parameters: Set the specified DO to be triggered when the robot arm moves to a
specified distance or percentage. You can set multiple groups, each of which contains the following
parameters:

Mode: trigger mode. 0: distance percentage; 1: distance value.
Distance: specified distance.

If Distance is positive, it refers to the distance away from the starting point.
If Distance is negative, it refers to the distance away from the target point.
If Mode is 0, Distance refers to the percentage of total distance. range: 0 - 100.
If Mode is 1, Distance refers to the distance value, unit: mm.

Index: DO index.
Status: DO status. 0: OFF; 1: ON.

Optional parameter:

184

User: user coordinate system index, which can be used here after being added in Settings.
Tool: tool coordinate system index, which can be used here after being added in Settings.
CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
Speed: velocity rate, range: 1 - 100.
Accel: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).

SYNC=0: asynchronous execution, which means returning immediately after being called,
regardless of the execution process.
SYNC=1: synchronous execution. which means not returning after being called until the
command is executed completely.

Example:

GoIO(P1, { {0, 10, 2, 1} })

The robot arm moves towards P1 with the default setting. When it moves 10% distance away from the
starting point, set DO2 to ON.

MoveIO

Command:

MoveIO(P,{ {Mode,Distance,Index,Status},{Mode,Distance,Index,Status}},"User=1 Tool=2 CP=1 Spee
dS=50 AccelS=20 SYNC=1")

Description:

Move from the current position to a target position in a linear mode under the Cartesian coordinate system,
and set the status of digital output port when the robot is moving.

Required parameter:

P: target point, which is user-defined or obtained from the Point page. Only Cartesian coordinate
points are supported.
Digital output parameters: Set the specified DO to be triggered when the robot arm moves a specified
distance or percentage. You can set multiple groups, each of which contains the following parameters:

Mode: trigger mode. 0: distance percentage; 1: distance value.
Distance: specified distance.

If Distance is positive, it refers to the distance away from the starting point.
If Distance is negative, it refers to the distance away from the target point.
If Mode is 0, Distance refers to the percentage of total distance. range: 0 - 100.
If Mode is 1, Distance refers to the distance value, unit: mm.

Index: DO index.
Status: DO status. 0: OFF; 1: ON.

185

Optional parameter:

User: user coordinate system index, which can be used here after being added in Settings.
Tool: tool coordinate system index, which can be used here after being added in Settings.
CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
Speed: velocity rate, range: 1 - 100.
Accel: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).

SYNC=0: asynchronous execution, which means returning immediately after being called,
regardless of the execution process.
SYNC=1: synchronous execution. which means not returning after being called until the
command is executed completely.

Example:

MoveIO(P1, { {0, 10, 2, 1} })

The robot moves towards P1 with the default setting. When it moves 10% distance away from the starting
point, set DO2 to ON.

MoveJIO

Command:

MoveJIO(P,{ {Mode,Distance,Index,Status},{Mode,Distance,Index,Status}...}, "User=1 Tool=2 CP=1
 Speed=50 Accel=20 SYNC=1")

Description:

Move from the current position to the target joint angle through joint motion, and set the status of digital
output port when the robot is moving.

Required parameter:

P: target joint angle.
Digital output parameters: Set the specified DO to be triggered when the robot arm moves a specified
distance or percentage. You can set multiple groups, each of which contains the following parameters:

Mode: trigger mode. 0: distance percentage; 1: distance value.
Distance: specified distance.

If Distance is positive, it refers to the distance away from the starting point.
If Distance is negative, it refers to the distance away from the target point.
If Mode is 0, Distance refers to the percentage of total distance. Range: 0 - 100.
If Mode is 1, Distance refers to the distance value. Unit: mm.

Index: DO index.

186

Status: DO status. 0: OFF; 1: ON.

Optional parameter:

CP: set continuous path rate in motion (see CP command in Motion parameter), range: 0 - 100.
Speed: velocity rate, range: 1 - 100.
Accel: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).
SYNC = 0: asynchronous execution, which means returning immediately after being called,
regardless of the execution process.
SYNC = 1: synchronous execution, which means not returning after being called until the command is
executed completely.

Example:

local P = {joint={0,-0.0674194,0,0,0,0}}
MoveJIO(P, { {0, 10, 2, 1} })

The robot arm moves towards P with the default setting. When it moves to 10% distance away from the
starting point, set DO2 to ON.

ServoJ

Command:

ServoJ(P,"t=0.1 lookahead_time=50 gain=500")

Description:

The dynamic following command based on joint space is generally used for the stepping function of online
control to realize dynamic following by cyclic calling. The calling frequency is recommended to be set to
33 Hz, that is, the interval of cyclic calling is 30 ms.

 NOTICE
This command is not affected by global speed.
When the joint angle of the target point is quite different from that of the current point, and the
motion time t is small, the joint movement speed will be too fast, which may lead to servo error
or even power outage of the robot.
Before using the command, it is recommended to carry out velocity planning for the running
points, and issue the planned points according to the fixed time interval t to ensure that the robot
can track the target points smoothly.

187

Required parameter:

P: target joint angle.

Optional parameter:

t: running time of the point, unit: s, range: [0.02,3600.0], default value: 0.1.
lookahead_time: lookahead_time, similar to the D term in PID control. Scalar, no unit, range:
[20.0,100.0], default value: 50.
gain: proportional gain of target position, similar to the P term in PID control. Scalar, no unit, range:
[200.0,1000.0], default value: 500.

The lookahead_time and gain parameters jointly determine the response time and trajectory smoothness of
the robot arm. A smaller lookahead_time value or a larger gain value can make the robot arm respond
quickly, but may cause instability and jitter.

Example:

ServoJ({joint={0,-0.0674194,0,0,0,0}},"t=0.1 lookahead_time=50 gain=500")

ServoP

Command:

ServoP(P)

Description:

The dynamic following command based on Cartesian space is generally used for the stepping function of
online control to realize dynamic following by cyclic calling. The calling frequency is recommended to be
set to 33 Hz, that is, the interval of cyclic calling is 30 ms.

Parameter:

P: target Cartesian point.

Example:

ServoP({pose={-500,100,200,150,0,90} }）

188

Motion parameter
The motion parameters are used to set or obtain relevant motion parameters of the robot. The commands in
this group are queue commands except GetPose, GetAngle, and SpeedFactor.

Sync

Command:

Sync()

Description:

The command is used to block the program to execute the queue commands. It returns until all the queue
commands have been executed, and then executes subsequent commands. Generally it is used to wait for
the robot arm to complete the movement.

Example:

Go(P1)
Go(P2)
Sync()

The robot arm moves to P1, and then moves to P2 before it returns to execute subsequent commands.

CP

Command:

CP(R)

Description:

Set the continuous path (CP) ratio, that is, when the robot arm moves continuously via multiple points,
whether it transitions at a right angle or in a curved way when passing through the middle point.

189

Required parameter:

R: continuous path ratio, range: 1 - 100

Example:

CP(50)
Move(P1)
Move(P2)
Move(P3)

The robot arm moves from P1 to P3 via P2 with 50% continuous path ratio.

SpeedFactor

Command:

SpeedFactor(R)

Description:

Set global speed rate.

Required parameter:

R: velocity rate, range: 1 - 100.

Example:

SpeedFactor(20)

Set the global speed rate to 20%.

Speed

Command:

190

Speed(R)

Description:

Set the velocity rate of joint motion.

Required parameter:

R: velocity rate, range: 1 - 100.

Example:

Speed(20)
Go(P1)

The robot arm moves to P1 with 20% velocity rate.

Accel

Command:

Accel(R)

Description:

Set the acceleration rate of joint motion.

Required parameter:

R: acceleration rate, range: 1 - 100.

Example:

Accel(50)
Go(P1)

The robot arm moves to P1 with 50% acceleration rate.

SpeedS

Command:

SpeedS(R)

Description:

191

Set the space motion (X/Y/Z) velocity rate for linear and arc motion.

Required parameter:

R: velocity rate, range: 1 - 100.

Example:

SpeedS(20)
Move(P1)

The robot arm moves to P1 with 20% velocity rate.

AccelS

Command:

AccelS(R)

Description:

Set the space motion (X/Y/Z) acceleration rate for linear and arc motion.

Required parameter:

R: acceleration rate, range: 1 - 100.

Example:

AccelS(50)
Move(P1)

The robot arm moves to P1 with 50% acceleration rate.

SpeedR

Command:

SpeedR(R)

Description:

Set the pose motion (RX/RY/RZ) velocity rate for linear and arc motion.

Required parameter:

R: velocity rate, range: 1 - 100.

192

Example:

SpeedR(20)
Move(P1)

The robot arm moves to P1 with 20% velocity rate.

AccelR

Command:

AccelR(R)

Description:

Set the pose motion (RX/RY/RZ) acceleration rate for linear and arc motion.

Required parameter:

R: acceleration rate, range: 1 - 100.

Example:

AccelR(50)
Move(P1)

The robot arm moves to P1 with 50% acceleration rate.

GetPose

Command:

GetPose("user=0 tool=0")

Description:

Get the real-time posture of the robot arm under the Cartesian coordinate system.

Optional parameter:

user: user coordinate system index corresponding to the posture, which needs to be added in the
control software first. If not set, the global user coordinate system is used.
tool: tool coordinate system index corresponding to the posture, which needs to be added in the
control software first. If not set, the global tool coordinate system is used.

Return:

193

Cartesian coordinates of the current posture.

Example:

local currentPose = GetPose()
Go(P1)
Go(currentPose)

The robot arm moves to P1, and then returns to the current posture.

GetAngle

Command:

GetAngle()

Description:

Get the real-time posture of the robot arm under the Joint coordinate system.

Return:

Joint coordinates of the current posture.

Example:

local currentAngle = GetAngle()
Go(P1)
MoveJ(currentAngle)

The robot arm moves to P1, and then returns to the current posture.

CheckGo

Command:

CheckGo(P)

Description:

Check the operatibility of joint motion commands.

Required parameter:

P: target point, which is user-defined or obtained from the Point page. Only Cartesian coordinate points are
supported.

194

Return:

Check result.

0: no error
16: End point closed to shoulder singularity point
17: End point inverse kinematics error with no solution
18: Inverse kinematics error with result out of working area
22: Arm orientation error
26: End point closed to wrist singularity point
27: End point closed to elbow singularity point
29: Speed parameter error
32: Shoulder singularity point in trajectory
33: Inverse kinematics error with no solution in trajectory
34: Inverse kinematics error with result out of working area in trajectory
35: Wrist singularity point in trajectory
36: Elbow singularity point in trajectory
37: Joint angle is changed over 180 degree

Example:

local status=CheckGo (P1)
if(status==0)
 then
 Go(P1)
 end

Check whether the robot arm can reach P1 through joint motion default setting. If it can, move to P1
through joint motion.

CheckMove

Command:

CheckMove(P)

Description:

Check the operatibility of linear motion commands.

Required parameter:

P: target point, which is user-defined or obtained from the Point page. Only Cartesian coordinate points are
supported.

Return:

195

Check result.

0: no error
16: End point closed to shoulder singularity point
17: End point inverse kinematics error with no solution
18: Inverse kinematics error with result out of working area
22: Arm orientation error
26: End point closed to wrist singularity point
27: End point closed to elbow singularity point
29: Speed parameter error
32: Shoulder singularity point in trajectory
33: Inverse kinematics error with no solution in trajectory
34: Inverse kinematics error with result out of working area in trajectory
35: Wrist singularity point in trajectory
36: Elbow singularity point in trajectory
37: Joint angle is changed over 180 degree

Example:

local status=CheckMove (P1)
if(status==0)
 then
 Move(P1)
 end

Check whether the robot arm can reach P1 through linear motion default setting. If it can, move to P1
through linear motion.

TCPSpeed

Command:

TCPSpeed(vt)

Description:

Set the absolute speed. The motion commands of Cartesian coordinate system after this command will run
at the set absolute speed, and the joint coordinate motion commands will not be affected. After setting
TCPSpeed, SpeedS no longer takes effect, but the maximum speed is still limited by the global speed
(including reduced mode).

When using the welding process package, if the command conflicts with the related commands of welding,
the welding commands will take precedence.

Required parameter:

196

vt: absolute speed, unit: mm/s, range: (0,100000]

Example:

TCPSpeed(100)
Move(P1)

The robot arm moves to P1 at an absolute speed of 100mm/s through linear motion.

TCPSpeedEnd

Command:

TCPSpeedEnd()

Description:

The command is used with TCPSpeed command for switching off absolute speed settings.

Example:

TCPSpeed(100)
Move(P1)
TCPSpeedEnd()
Move(P2)

The robot arm moves to P1 at an absolute speed of 100mm/s through linear motion, and then moves to P2
at the global speed through linear motion.

InverseSolution

Command:

InverseSolution(P,User,Tool,isJointNear,JointNear)

Description:

Inverse solution: Calculate the joint coordinates of the robot arm, based on the given coordinates in the
specified Cartesian coordinate system.

As Cartesian coordinates only define the spatial coordinates and tilt angle of the TCP, the robot arm can
reach the same posture through different gestures, which means that one posture variable can correspond to
multiple joint variables. To get a unique solution, the system requires a specified joint coordinate, and the
solution closest to this joint coordinate is selected as the inverse solution. For the setting of this joint
coordinate, see the isJointNear and JointNear parameters for details.

197

Required parameter:

P: target Cartesian point.

User: the calibrated user coordinate system index.

Tool: the calibrated tool coordinate system index.

Optional parameter:

isJointNear: used to set whether JointNear is effective. 0 or null: JointNear is ineffective, the
algorithm selects the joint angles according to the current angle. 1: the algorithm selects the joint
angles according to JointNear.
JointNear: joint coordinates for selecting joint angles.

Return:

The joint coordinates of the points.

Example:

InverseSolution({473.000000,-141.000000,469.000000,-180.000000,0.000,-90.000},0,0)

The Cartesian coordinates of the end of the robot arm in the user coordinate system 0 and joint coordinate
system 0 are {473,-141,469,-180,0,-90}. Calculate the joint coordinates and select the nearest solution to
the current joint angle.

InverseSolution({473.000000,-141.000000,469.000000,-180.000000,0.000,-90.000},0,0,1,{0,0,-90,0,
90,0})

The Cartesian coordinates of the end of the robot arm in the user coordinate system 0 and joint coordinate
system 0 are {473,-141,469,-180,0,-90}. Calculate the joint coordinates and select the nearest solution to
{0,0,-90,0,90,0}.

SetBackDistance

Command:

SetBackDistance(distance)

Description:

Set the backoff distance after the robot detects collision. The value set through this command only takes
effect when the current project is running, and will restore to the original value after the project stops.

Required parameter:

198

distance: collision backoff distance, range: [0,50], unit: mm.

Example:

SetBackDistance(20)

Set the collision backoff distance to 20mm.

199

Relative motion
The motion commands is used to control the movement of the robot arm. The commands in this group are
queue commands except for RP and RJ.

RP

Command:

RP(P, {OffsetX, OffsetY, OffsetZ})

Description:

Set the X-axis, Y-axis, Z-axis offset of a point under the Cartesian coordinate system to return a new
Cartesian coordinate point.

Required parameter:

P1: Point before offset, which is user-defined or obtained from the TeachPoint page. Only Cartesian
coordinate points are supported
OffsetX, OffsetY, OffsetZ: X-axis, Y-axis, Z-axis offset in the Cartesian coordinate system; unit: mm

Return:

Cartesian coordinate point after offset

Example:

Go(RP(P1, {30,50,10}))

Displace P1 by a certain distance on the X, Y, and Z axes respectively, and then move to the point after the
offset.

RJ

Command:

RJ(P1, {Offset1, Offset2, Offset3, Offset4, Offset5, Offset6})

Description:

Set the angle offset of J1~J6 axes of a specified point under the Joint coordinate system, and return a new
joint coordinate point.

200

Required parameter:

P1: Point before offset, which cannot be obtained from the TeachPoint page. Only Cartesian
coordinate points are supported.
Offset1~Offset6: J1~J6 axes offset. unit: °.

Return:

Joint coordinate point after offset

Example:

MoveJ(RJ(P1, {60,50,32,30,25,30}))

Set the angle offset of J1~J6 axes, and move the robot arm to the target point after offset.

GoToolR

Command:

GoToolR({x, y, z, rx, ry, rz}, Tool, "User=0 CP=1 Speed=50 Accel=20 SYNC=1")

Description:

Move from the current position to the target position relatively through joint motion. The trajectory of joint
motion is not linear, and all joints complete the motion at the same time.

Required parameter:

{x, y, z, rx, ry, rz}: offset of the target point relative to the current position in the specified tool
coordinate system. x, y, z represent the spatial offset, unit: mm; rx, ry, rz represent the angular offset,
unit: °.
Tool: tool coordinate system index, which can be used here after being added in Settings.

Optional parameter:

User: user coordinate system index, which can be used here after being added in Settings.
CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
Speed: velocity rate, range: 1 - 100.
Accel: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).
SYNC=0: asynchronous execution, which means returning immediately after being called, regardless
of the execution process.
SYNC = 1: synchronous execution. which means not returning after being called until the command is
executed completely.

Example:

201

GoToolR({10, 10, 10, 0, 0, 0},0)

The robot arm moves to the specific offset point along the tool coordinate system 0 through joint motion
with the default settings.

MoveToolR

Command:

MoveToolR({x, y, z, rx, ry, rz}, Tool, "User=0 CP=1 SpeedS=50 AccelS=20 SYNC=1")

Description:

Move from the current position to the target position relatively through linear motion.

Required parameter:

{x, y, z, rx, ry, rz}: offset of the target point relative to the current position in the specified tool
coordinate system. x, y, z represent the spatial offset, unit: mm; rx, ry, rz represent the angular offset,
unit: °.
Tool: tool coordinate system index, which can be used here after being added in Settings.

Optional parameter:

User: user coordinate system index, which can be used here after being added in Settings.
CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
SpeedS: velocity rate, range: 1 - 100.
AccelS: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).
SYNC=0: asynchronous execution, which means returning immediately after being called, regardless
of the execution process.
SYNC = 1: synchronous execution. which means not returning after being called until the command is
executed completely.

Example:

MoveToolR({10, 10, 10, 0, 0, 0},0)

The robot arm moves to the specific offset point along the tool coordinate system 0 through linear motion
with the default settings.

GoUserR

Command:

202

GoUserR({x, y, z, rx, ry, rz}, User, "Tool=0 CP=1 Speed=50 Accel=20 SYNC=1")

Description:

Move from the current position to the target position relatively through joint motion. The trajectory of joint
motion is not linear, and all joints complete the motion at the same time.

Required parameter:

{x, y, z, rx, ry, rz}: offset of the target point relative to the current position in the specified user
coordinate system. x, y, z represent the spatial offset, unit: mm; rx, ry, rz represent the angular offset,
unit: °.
User: user coordinate system index, which can be used here after being added in Settings.

Optional parameter:

Tool: tool coordinate system index, which can be used here after being added in Settings.
CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
Speed: velocity rate, range: 1 - 100.
Accel: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).
SYNC=0: asynchronous execution, which means returning immediately after being called, regardless
of the execution process.
SYNC = 1: synchronous execution. which means not returning after being called until the command is
executed completely.

Example:

GoUserR({10, 10, 10, 0, 0, 0},0)

The robot arm moves to the specific offset point along the user coordinate system 0 through joint motion
with the default settings.

MoveUserR

Command:

MoveUserR({x, y, z, rx, ry, rz}, User, "Tool=0 CP=1 SpeedS=50 AccelS=20 SYNC=1")

Description:

Move from the current position to the target position relatively through linear motion.

Required parameter:

{x, y, z, rx, ry, rz}: offset of the target point relative to the current position in the specified user

203

coordinate system. x, y, z represent the spatial offset, unit: mm; rx, ry, rz represent the angular offset,
unit: °.
User: user coordinate system index, which can be used here after being added in Settings.

Optional parameter:

Tool: tool coordinate system index, which can be used here after being added in Settings.
CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
SpeedS: velocity rate, range: 1 - 100.
AccelS: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).
SYNC=0: asynchronous execution, which means returning immediately after being called, regardless
of the execution process.
SYNC: synchronous execution. which means not returning after being called until the command is
executed completely.

Example:

MoveUserR({10, 10, 10, 0, 0, 0},0)

The robot arm moves to the specific offset point along the user coordinate system 0 through linear motion
with the default settings.

MoveJR

Command:

MoveJR({Offset1, Offset2, Offset3, Offset4, Offset5, Offset6},"CP=1 Speed=50 Accel=20 SYNC=1")

Description:

Move from the current position to the joint offset angle in a point-to-point mode (joint motion).

Required parameter:

{Offset1, Offset2, Offset3, Offset4, Offset5, Offset6}: J1 - J6 axes offset under the Cartesian coordinate
system, unit: °.

Optional parameter:

CP: set continuous path in motion (see CP command in Motion parameter), range: 0~100.
Speed: velocity rate, range: 1 - 100.
Accel: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).

SYNC=0: asynchronous execution, which means returning immediately after being called,
regardless of the execution process.

204

SYNC=1: synchronous execution. which means not returning after being called until the
command is executed completely.

Example:

MoveJR({20,20,10,0,10,0})

The robot arm moves to the offset angle through joint motion with the default setting.

GoR

Command:

GoR({OffsetX, OffsetY, OffsetZ},"User=1 Tool=2 CP=1 Speed=50 Accel=20 SYNC=1")

Description:

This command has been replaced by GoToolR and GoUserR.

Move from the current position to the offset position in a point-to-point mode (joint motion) under the
Cartesian coordinate system. The trajectory of joint motion is not linear, and all joints complete the motion
at the same time.

Required parameter:

OffsetX, OffsetY, OffsetZ: X-axis, Y-axis and Z-axis offset under the Cartesian coordinate system, unit:
mm.

Optional parameter:

User: user coordinate system index, which can be used here after being added in the Settings.
Tool: tool coordinate system index, which can be used here after being added in the Settings.
CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
Speed: velocity rate, range: 1 - 100.
Accel: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).

SYNC=0: asynchronous execution, which means returning immediately after being called,
regardless of the execution process.
SYNC=1: synchronous execution. which means not returning after being called until the
command is executed completely.

Example:

GoR({10,10,10})

205

The robot arm moves to the target point in a joint-to-joint mode with the default setting.

MoveR

Command:

MoveR({OffsetX, OffsetY, OffsetZ},"User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1")

Description:

This command has been replaced by MoveToolR and MoveUserR.**

Move from the current position to the offset position in a linear mode under the Cartesian coordinate
system.

Required parameter:

OffsetX, OffsetY, OffsetZ: X-axis, Y-axis and Z-axis offset under the Cartesian coordinate system, unit:
mm

Optional parameter:

User: user coordinate system index, which can be used here after being added in the Settings.
Tool: tool coordinate system index, which can be used here after being added in the Settings.
CP: set continuous path in motion (see CP command in Motion parameter), range: 0 - 100.
SpeedS: velocity rate, range: 1 - 100.
AccelS: acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).

SYNC=0: asynchronous execution, which means returning immediately after being called,
regardless of the execution process.
SYNC=1: synchronous execution. which means not returning after being called until the
command is executed completely.

Example:

MoveR({10,10,10})

The robot arm moves to the target point through linear motion with the default setting.

206

IO
The IO commands are used to read and write system IO and set relevant parameters.

DI

Command:

DI(index)

Description:

Immediate command. Get the status of the digital input port.

Required parameter:

index: DI index

Return:

Level (ON/OFF) of corresponding DI port

Example:

if (DI(1)==ON) then
Move(P1)
end

The robot arm moves to P1 through linear motion when the status of DI1 is ON.

DIGroup

Command:

DIGroup(index1,...,indexN)

Description:

Immediate command. Get the status of multiple digital input ports.

Required parameter:

index: DI index, more than one can be entered, separated by commas.

Return:

207

Status (ON/OFF) of corresponding DI port, returned as an array.

Example:

local digroup = DIGroup(1,2)
if (digroup[1]&digroup[2]==ON)
then
 Move(P1)
end

The robot arm moves to P1 in a linear motion when both DI1 and DI2 are ON.

WaitDI

Command:

WaitDI(index,ON|OFF,period)

Description:

Immediate command. Get the status of the digital input port. If the status is consistent with the specified
status, the program will continue to run. Otherwise, get the status of the digital input port at a specified
interval.

Required parameter:

index: DI index
ON|OFF: status of DI port. ON: high level; OFF: low level
period: period for getting DI status, unit: ms

Example:

WaitDI(1,ON,50)
Move(P1)

Get the status of DI1 every 50ms. If DI1 is high, the program continues to run, and the robot arm moves to
P1 in a linear mode.

DO

Command:

DO(index,ON|OFF)

Description:

208

Queue command. Set the status of digital output port.

Required parameter:

index: DO index
ON|OFF: status of the DO port. ON: high level; OFF: low level

Example:

DO(1,ON)

Set the status of DO1 to ON.

DOExecute

Command:

DOExecute(index,ON|OFF)

Description:

Immediate command. Set the status of digital output port immediately regardless of the current command
queue.

Required parameter:

index: DO index
ON|OFF: status of the DO port. ON: high level; OFF: low level

Example:

DOExecute(1,ON)

Set the status of DO1 to ON immediately regardless of the current command queue.

DOGroup

Command:

DOGroup({index1,ON|OFF},..,{indexN,ON|OFF})

Description:

Set the status of multiple digital output ports.

Required parameter:

209

index: DO index.
ON|OFF：status of the DO port.

Multiple groups can be set, with each group wrapped in curly brackets and separated by commas.

Example:

DOGroup({1,ON},{2,ON})

Set DO1 and DO2 to ON.

ToolDO

Command:

ToolDO(index,ON|OFF)

Description:

Queue command. Set the status of tool digital output port.

Required parameter:

index: tool DO index
ON|OFF: status of the DO port. ON: high level; OFF: low level

Example:

ToolDO(1,ON)

Set the status of tool DO1 to ON.

ToolDOExecute

Command:

ToolDOExecute(index,ON|OFF)

Description:

Immediate command. Set the status of tool digital output port immediately regardless of the current
command queue.

Required parameter:

index: tool DO index

210

ON|OFF: status of the DO port. ON: high level; OFF: low level

Example:

ToolDOExecute(1,ON)

Set the status of tool DO1 to ON immediately regardless of the current command queue.

ToolDI

Command:

ToolDI(index)

Description:

Immediate command. Get the status of tool input port.

Required parameter:

index: tool DI index

Return:

Level (ON/OFF) of corresponding DI port

Example:

if (ToolDI(1)==ON) then
Move(P1)
end

The robot moves to P1 in a linear mode when the status of tool DI1 is ON.

ToolAI

Command:

ToolAI(index)

Description:

Immediate command. Get the value of tool analog input port. You need to set the port to voltage-input
mode through ToolAnalogMode before using.

Required parameter:

211

index: tool AI index

Return:

Value of corresponding AI index

Example:

test = ToolAI(1)

Get the value of tool AI1 and assign it to the variable "test".

ToolAnalogMode

Command:

ToolAnalogMode(mode)

Description:

Immediate command. Set the status of tool analog input port.

Required parameter:

mode: mode of analog input port

0: default, 485 mode
10: current acquisition mode
11: 0 - 3.3 V voltage input mode
12: 0 - 10 V voltage input mode

Example:

ToolAnalogMode(11)

Set the status of tool analog input port to 0 - 3.3 V voltage input mode .

AO

Command:

AO(index,value)

Description:

Queue command. Set the voltage of analog output port.

212

Required parameter:

index: AO index
value: voltage, range: 0 - 10

Example:

AO(1,2)

Set the voltage of AO1 to 2V.

AOExecute

Command:

AOExecute(index,value)

Description:

Immediate command. Set the voltage of analog output port immediately regardless of the current command
queue.

Required parameter:

index: AO index
value: voltage, range: 0 - 10

Example:

AOExecute(1,2)

Set the voltage of AO1 to 2V immediately regardless of the current command queue.

AI

Command:

AI(index)

Description:

Immediate command. Get the voltage of analog input port.

Required parameter:

index: AI index

213

Return:

Value of corresponding AI index

Example:

test = AI(1)

Get the value of tool AI1 and assign it to the variable "test".

SetToolPower

Command:

SetToolPower(status)

Description:

Immediate command. Set the power status of end tool, generally used for restarting the end power, such as
repowering and reinitializing the gripper. If you need to call the interface continuously, it is recommended
to keep an interval of at least 4 ms.

Required parameter:

status: power status of end tool, 1: power off; 0: power on

Example:

SetToolPower(1)

Power off the tool.

SetABZPPC

Command:

SetABZPPC(value)

Description:

Immediate command. Set the current value of the encoder.

Required parameter:

value: position of encoder, unit: pulse.

214

Example:

SetABZPPC(1000)

Set the value of ABZ encoder to 1000 pulses.

GetABZ

Command:

GetABZ()

Description:

Immediate command. Get the resolution of configured ABZ encoder.

Return:

Resolution of encoder, unit: pulse/mm.

Example:

local abz = GetABZ()

Get the resolution of configured ABZ encoder, and assign the value to the variable "abz".

215

TCP/UDP
TCP/UDP commands are used for TCP/UDP communication. The commands in this group are all
immediate commands.

TCPCreate

Command:

TCPCreate(isServer, IP, port)

Description:

Create a TCP network. Only one TCP network is supported.

Required parameter:

isServer: whether to create a server. true: create a server; false: create a client.

IP: IP address of the server, which is in the same network segment of the client without conflict. It is
the IP address of the robot arm when a server is created, and the address of the peer when a client is
created.

port: server port. When the robot serves as a server, do not use the following ports that have been
occupied by the system.

22, 23, 502 (0 - 1024 ports are linux-defined ports, which has a high possibility of being occupied.
Please avoid to use),

30005, 30006, 5000 - 5004, 6000, 8080, 11000, 11740, 22000, 22002, 29999, 30003, 30004, 60000,
65500~65515

Return:

err:
0: TCP network has been created successfully.
1: TCP network failed to be created.

socket: socket object.

Example 1:

local ip="192.168.5.1" -- Set the IP address of the robot as the IP address of the server
local port=6001 -- Server port
local err=0
local socket=0
err, socket = TCPCreate(true, ip, port)

216

Create a TCP server.

Example 2:

local ip="192.168.5.25" -- Set the IP address of external equipment such as a camera as the IP
 address of the server
local port=6001 -- Server port
local err=0
local socket=0
err, socket = TCPCreate(false, ip, port)

Create a TCP client.

TCPStart

Command:

TCPStart(socket, timeout)

Description:

Establish TCP connection. The robot arm waits to be connected with the client when serving as a server,
and connects the server when serving as a client.

Required parameter:

socket: socket object.
timeout: waiting timeout. unit: s. If timeout is 0, wait until the connection is established successfully.
If not, return connection failure after exceeding the timeout.

Return:

Connection result.

0: TCP connection is successful
1: input parameters are incorrect
2: socket object is not found
3: timeout setting is incorrect
4: connection failure

Example:

err = TCPStart(socket, 0)

Start to establish TCP connection until the connection is successful.

217

TCPRead

Command:

TCPRead(socket, timeout, type)

Description:

Receive data from a TCP peer.

Required parameter:

socket: socket object.

Optional parameter:

timeout: waiting timeout. unit: s. If timeout is 0, wait until the data is completely read before running;
if not, continue to run after exceeding the timeout.
type: type of return value. If type is not set, the buffer format of RecBuf is a table. If type is set to
string, the buffer format is a string.

Return:

err:
0: Data has been received successfully.
1: Data failed to be received.

Recbuf: data buffer.

Example:

err, RecBuf = TCPRead(socket,0,"string") -- The data type of RecBuf is string
err, RecBuf = TCPRead(socket, 0) -- The data type of RecBuf is table

Receive TCP data, and save the data as string and table format respectively.

TCPWrite

Command:

TCPWrite(socket, buf)

Description:

Send data to TCP peer.

Required parameter:

218

socket: socket object.
buf: data sent by the robot.

Return:

Result of sending data.

0: Data has been sent successfully.
1: Data failed to be sent.

Example:

TCPWrite(socket, "test")

Send TCP data "test".

TCPDestroy

Command:

TCPDestroy(socket)

Description:

Disconnect the TCP network and destroy the socket object.

Required parameter:

socket: socket object.

Return:

Execution result.

0: It has been executed successfully.
1: It failed to be executed.

Example:

TCPDestroy(socket)

Disconnect with the TCP peer.

UDPCreate

Command:

219

UDPCreate(isServer, IP, port)

Description:

Create a UDP network. Only one UDP network is supported.

Required parameter:

isServer: false.
IP: IP address of the peer, which is in the same network segment of the client without conflict.
port: peer port.

Return:

err:
0: The UDP network has been created successfully.
1: The UDP network failed to be created.

socket: socket object.

Example:

local ip="192.168.5.25" -- Set the IP of an external device such as a camera as the IP address
 of the peer
local port=6001 -- peer port
local err=0
local socket=0
err, socket = UDPCreate(false, ip, port)

Create a UDP network.

UDPRead

Command:

UDPRead(socket, timeout, type)

Description:

Receive data from the UDP peer.

Required parameter:

socket: socket object

Optional parameter:

timeout: waiting timeout. unit: s. If timeout is 0, wait until the data is completely read before running;
if not, continue to run after exceeding the timeout.

220

type: type of return value. If type is not set, the buffer format of RecBuf is a table. If type is set to
string, the buffer format is a string.

Return:

err:
0: Data has been received successfully.
1: Data failed to be received.

Recbuf: data buffer.

Example:

err, RecBuf = UDPRead(socket,0,"string") -- The data type of RecBuf is string
err, RecBuf = UDPRead(socket, 0) -- The data type of RecBuf is table

Receive UDP data, and save the data as string and table format respectively.

UDPWrite

Command:

UDPWrite(socket, buf)

Description:

Send data to UDP peer.

Required parameter:

socket: socket object
buf: data sent by the robot

Return:

Result of sending data.

0: Data has been sent successfully.
1: Data failed to be sent.

Example:

UDPWrite(socket, "test")

Send UDP data "test".

221

Modbus
Modbus commands are used for Modbus communication. This group of commands are all immediate
commands.

ModbusCreate

Command:

ModbusCreate()

Description:

Create Modbus master station, and establish connection with the slave station.

Required parameter:

IP: slave IP address.

port: slave port.

slave_id: slave ID. range: 0 - 4.

isRTU: If it is null or 0, establish ModbusTCP communication. If it is 1, establish ModbusRTU
communication.

 NOTICE
This parameter determines the protocol format used to transmit data after the connection is
established, and does not affect the connection result. Therefore, if you set the parameter
incorrectly when creating the master, the master can still be created successfully, but there may
be exception in the subsequent communication.

Return:

err:
0: Modbus master station has been created successfully.
1: As there are 5 created master stations, a new one failed to be created.
2: Modbus master station failed to be initialized. It is recommended to check whether the IP, port
and network is normal.
3: Modbus slave station failed to be connected. It is recommended to check whether the slave is
established properly and whether the network is normal.

id: Master station index, range: 0 - 4.

222

Example 1:

local ip="192.168.5.123" -- slave IP address
local port=503 -- slave port
local err=0
local id=1
err, id = ModbusCreate(ip, port, 1)

Create the Modbus master, and connect with the specified slave.

Example 2:

When none of the parameters are specified or the IP is specified to 127.0.0.1 or 0.0.0.1, it indicates
connecting to the local Modbus slave. Please refer to the following commands.

ModbusCreate()

ModbusCreate("127.0.0.1")

ModbusCreate("0.0.0.1")

ModbusCreate("127.0.0.1"，xxx,xxx) -- xxx arbitrary value

ModbusCreate("0.0.0.1"，xxx,xxx) -- xxx arbitrary value

Example 3:

err,id=ModbusCreate("127.0.0.1",60000,1,1)

The example 3 is a special case, indicating communication with the external Modbus RTU slave via the
485 interface at the end of the robot arm.

GetInBits

Command:

GetInBits(id, addr, count)

Description:

Read the discrete input value from Modbus slave.

223

Required parameter:

id: master ID.
addr: starting address of the discrete inputs, range: 0 - 9999.
count: number of the discrete inputs. The maximum value is 216 (CR series) or 984 (Nova series)
when communicating with the slave via the tool I/O interface, and 2008 for the other scenarios.

Return:

Discrete input value stored in a table, where the first value in the table corresponds to the discrete input
value at the starting address.

Example:

inBits = GetInBits(id,0,5)

Read 5 discrete inputs starting from address 0.

GetInRegs

Command:

GetInRegs(id, addr, count, type)

Description:

Read the input register value with the specified data type from the Modbus slave.

Required parameter:

id: master ID.
addr: starting address of the input registers, range: 0 - 9998.
count: number of input register values.

Optional parameter:

type: data type

Empty: U16 by default
U16: 16-bit unsigned integer (two bytes, occupy one register). Up to 13 values (CR series) or 61
values (Nova series) are read continuously when communicating with the slave via the tool I/O
interface, and up to 125 values are read continuously for the other scenarios.
U32: 32-bit unsigned integer (four bytes, occupy two registers). Up to 6 values (CR series) or 30
values (Nova series) are read continuously when communicating with the slave via the tool I/O
interface, and up to 62 values are read continuously for the other scenarios.
F32: 32-bit single-precision floating-point number (four bytes, occupy two registers). Up to 6 values
(CR series) or 30 values (Nova series) are read continuously when communicating with the slave via

224

the tool I/O interface, and up to 62 values are read continuously for the other scenarios.
F64: 64-bit double-precision floating-point number (eight bytes, occupy four registers). Up to 3 values
(CR series) or 15 values (Nova series) are read continuously when communicating with the slave via
the tool I/O interface, and up to 31 values are read continuously for the other scenarios.

Return:

Input register values stored in a table, where the first value corresponds to the Input register value at the
starting address.

Example:

data = GetInRegs(id, 2048, 1, “U32”)

Read a 32-bit unsigned integer starting from address 2048.

GetCoils

Command:

GetCoils(id, addr, count)

Description:

Read the coil register value from the Modbus slave.

Required parameter:

id: master ID.
addr: starting address of the coil register, range: 0 - 9999.
count: number of coil register values. The maximum value is 216 (CR series) or 984 (Nova series)
when communicating with the slave via the tool I/O interface, and 2008 for the other scenarios.

Return:

Coil register value stored in a table, where the first value corresponds to the coil register value at the
starting address.

Example:

Coils = GetCoils(id,0,5)

Read 5 values in succession starting from address 0.

GetHoldRegs

225

Command:

GetHoldRegs(id, addr, count, type)

Description:

Read the holding register value with the specified data type from the Modbus slave.

Required parameter:

id: master ID.
addr: starting address of the holding register, range: 0 - 9998.
count: number of holding register values.

Optional parameter:

type: data type.

Empty: U16 by default.
U16: 16-bit unsigned integer (two bytes, occupy one register). Up to 13 values (CR series) or 61
values (Nova series) are read continuously when communicating with the slave via the tool I/O
interface, and up to 125 values are read continuously for the other scenarios.
U32: 32-bit unsigned integer (four bytes, occupy two registers). Up to 6 values (CR series) or 30
values (Nova series) are read continuously when communicating with the slave via the tool I/O
interface, and up to 62 values are read continuously for the other scenarios.
F32: 32-bit single-precision floating-point number (four bytes, occupy two registers). Up to 6 values
(CR series) or 30 values (Nova series) are read continuously when communicating with the slave via
the tool I/O interface, and up to 62 values are read continuously for the other scenarios.
F64: 64-bit double-precision floating-point number (eight bytes, occupy four registers). Up to 3 values
(CR series) or 15 values (Nova series) are read continuously when communicating with the slave via
the tool I/O interface, and up to 31 values are read continuously for the other scenarios.

Return:

Holding register value stored in a table, where the first value corresponds to the holding register value at
the starting address.

Example:

data = GetHoldRegs(id, 2048, 1, “U32”)

Read a 32-bit unsigned integer starting from address 2048.

SetCoils

Command:

226

SetCoils(id, addr, count, table)

Description:

Write the specified value to the specified address of coil register.

Required parameter:

id: master ID.
addr: starting address of the coil register, range: 6 - 9999.
count: number of values to be written to the coil register. The maximum value is 440 when
communicating with the slave via the tool I/O interface, and 1976 for the other scenarios.
table: store the values to be written to the coil register. The first value of the table corresponds to the
starting address of coil register.

Example:

local Coils = {0,1,1,1,0}
SetCoils(id, 1024, #coils, Coils)

Starting from address 1024, write 5 values in succession to the coil register.

SetHoldRegs

Command:

SetHoldRegs(id, addr, count, table, type)

Description:

Write the specified value according to the specified data type to the specified address of holding register.

Required parameter:

id: master ID.
addr: starting address of the holding register, range: 0 - 9998.
count: number of values to be written to the holding register.
table: store the values to be written to the coil register. The first value of the table corresponds to the
starting address of holding register.

Optional parameter:

type: data type.

Empty: U16 by default.
U16: 16-bit unsigned integer (two bytes, occupy one register). Up to 27 values are written

227

continuously when communicating with the slave via the tool I/O interface, and up to 123 values are
written continuously for the other scenarios.
U32: 32-bit unsigned integer (four bytes, occupy two registers). Up to 13 values are written
continuously when communicating with the slave via the tool I/O interface, and up to 61 values are
written continuously for the other scenarios.
F32: 32-bit single-precision floating-point number (four bytes, occupy two registers). Up to 13 values
are written continuously when communicating with the slave via the tool I/O interface, and up to 61
values are written continuously for the other scenarios.
F64: 64-bit double-precision floating-point number (eight bytes, occupy four registers). Up to 6 values
are written continuously when communicating with the slave via the tool I/O interface, and up to 30
values are written continuously for the other scenarios.

Example:

local data = {95.32105}
SetHoldRegs(id, 2048, #data, data, “F64”)

Starting from address 2048, write a double-precision floating-point number to the holding register.

ModbusClose

Command:

ModbusClose(id)

Description:

Disconnect with Modbus slave station.

Optional parameter:

id: master ID.

Return:

0: The Modbus slave has been disconnected successfully.
1: The Modbus slave failed to be disconnected.

Example:

ModbusClose(id)

Disconnect with the Modbus slave.

228

Program Control
The program control commands are general commands related to program control. The while, if and for
are flow control commands of lua. Please refer to Lua basic grammar - Process control.

print

Command:

print(var)

Description:

Immediate command. Print specific information to the console.

Required parameter:

var: print information

Example:

local var = "Hello World"
print(var)

Print Hello World to the console.

Sleep

Command:

Sleep(time)

Description:

Immediate command. Delay the execution of the next command. This command is used to block the
execution of the script.

Required parameter:

time: delay time, unit: ms. Decimal points are not allowed in the parameter, which will cause the alarm or
command to be invalid, even in the form of 0.5 * 1000. Please use the integer as the parameter.

Example:

229

DO(1,ON)
Sleep(100)
DO(1,OFF)

Set DO1 to ON, wait 100ms and then set DO1 to OFF.

Wait

Command:

Wait(time)

Description:

Queue command. Deliver the motion command with a delay, or deliver the next command with a delay
after the current motion is completed. This command only blocks the execution of background algorithm
queue.

Required parameter:

time: delay time, unit: ms. Decimal points are not allowed in the parameter, which will cause the alarm or
command to be invalid, even in the form of 0.5 * 1000. Please use the integer as the parameter.

Example:

DO(1,ON)
Wait(100)
Go(P1)
Wait(100)
DO(1,OFF)

Set DO1 to ON, wait 100ms and then move the robot to P1. Delay 100ms, and then set DO1 to OFF.

Pause

Command:

Pause()

Description:

Pause running the program. The program can continue to run only through software control or remote
control.

Example:

230

Go(P1)
Pause()
Go(P2)

The robot moves to P1 and then pauses running. It can continue to move to P2 only through external
control.

SetCollisionLevel

Command:

SetCollisionLevel(level)

Description:

Queue command. Set the level of collision detection. This settings only take effect when the current project
is running. After the project stops running, the parameters restore to the original settings.

Required parameter:

level: collision detection level, range: 0 to 5. 0 means turning off collision detection. The higher the level
from 1 to 5, the more sensitive the collision detection is.

Example:

SetCollisionLevel(2)

Set the collision detection to Level 2.

ResetElapsedTime

Command:

ResetElapsedTime()

Description:

Queue command. Start timing after all commands before this command are executed completely. This
command should be used combined with ElapsedTime() command for calculating the operating time.

Example:

Refer to the example of ElapsedTime.

ElapsedTime

231

Command:

ElapsedTime()

Description:

Queue command. Stop timing and return the time difference. The command should be used combined with
ResetElapsedTime() command.

This interface can only count the time difference within 35 minutes. If the time difference exceeds 35
minutes, the interface will return an incorrect time difference. For longer time differences, it is
recommended to use the Systime interface for calculation.

Return:

time between the start and the end of timing.

Example:

Go(P2, "Speed=100 Accel=100")
ResetElapsedTime()
for i=1,10 do
Move(P1)
Move(P2)
end
print (ElapsedTime())

Calculate the time for the robot arm to move back and forth 10 times between P1 and P2, and print it to the
console.

Systime

Command:

Systime()

Description:

Immediate command. Get the current system time.

Return:

Unix time stamp of the current time.

Example:

local time = Systime()
Move(P1)

232

local time2 = Systime()
print(time2-time1)

Get the current system time and save it to the variable "time".

SetUser

Command:

SetUser(index,table)

Description:

Queue command. Modify the specified user coordinate system. This modification only takes effect while
the current project is running. After the project is stopped, the coordinate system will be restored to the
value before modification.

Required parameter:

index: index of user coordinate system, range: 0 - 9 (0 is default user coordinate system)
table: matrix for user coordinate system, in {x, y, z, rx, ry, rz} format

Example:

SetUser(1,{10,10,10,0,0,0})

Modify the user coordinate system 1 to "X=10，Y=10，Z=10，RX=0，RY=0，RZ=0".

CalcUser

Command:

CalcUser(index,matrix_direction,table)

Description:

Queue command. Calculate the user coordinate system.

Required parameter:

index: index of user coordinate system, range: [0,9]. The initial value 0 refers to the default user
coordinate system.
matrix_direction: calculation method.

1: left multiplication, indicating that the coordinate system specified by "index" deflects the
value specified by "table" along the base coordinate system.

233

0: right multiplication, indicating that the coordinate system specified by "index" deflects the
value specified by "table" along itself.

table: offset value of user coordinate system, in {x, y, z, rx, ry, rz} format.

Return:

The user coordinate system after calculation, in {x, y, z, rx, ry, rz} format.

Example:

-- The following calculation process can be equivalent to: A coordinate system with the same i
nitial posture as User coordinate system 1, moves {x=10, y=10, z=10} along the base coordinate
 system and rotates {rx=10, ry=10, rz=10}, and the new coordinate system is newUser.
newUser = CalcUser(1,1,{10,10,10,10,10,10})

-- The following calculation process can be equivalent to: A coordinate system with the same i
nitial posture as User coordinate system 1, moves {x=10, y=10, z=10} along User coordinate sys
tem 1 and rotates {rx=10, ry=10, rz=10}, and the new coordinate system is newUser.
newUser = CalcUser(1,0,{10,10,10,10,10,10})

SetTool

Command:

SetTool(index,table)

Description:

Queue command. Modify the specified tool coordinate system.

Required parameter:

index: index of tool coordinate system, range: 0 - 9 (0 is default tool coordinate system).
table: matrix for tool coordinate system, in {x, y, z, rx, ry, rz} format.

Example:

SetTool(1,{10,10,10,0,0,0})

Modify the tool coordinate system 1 to "X=10，Y=10，Z=10，RX=0，RY=0，RZ=0".

CalcTool

Command:

CalcTool(index,matrix_direction,table)

234

Description:

Queue command. Calculate the tool coordinate system.

Required parameter:

index: index of tool coordinate system, range: [0,9]. The initial value 0 refers to the default flange
coordinate system (TCP0).
matrix_direction: calculation method.

1: left multiplication, indicating that the coordinate system specified by "index" deflects the
value specified by "table" along the flange coordinate system (TCP0).
0: right multiplication, indicating that the coordinate system specified by "index" deflects the
value specified by "table" along itself.

table: tool coordinate system, in {x, y, z, rx, ry, rz} format.

Return:

The tool coordinate system after calculation, in {x, y, z, rx, ry, rz} format.

Example:

-- The following calculation process can be equivalent to: A coordinate system with the same i
nitial posture as Tool coordinate system 1, moves {x=10, y=10, z=10} along the flange coordina
te system (TCP0) and rotates {rx=10, ry=10, rz=10}, and the new coordinate system is newTool.
newTool = CalcTool(1,1,{10,10,10,10,10,10})

-- The following calculation process can be equivalent to: A coordinate system with the same i
nitial posture as Tool coordinate system 1, moves {x=10, y=10, z=10} along Tool coordinate sys
tem 1 and rotates {rx=10, ry=10, rz=10}, and the new coordinate system is newTool.
newTool = CalcTool(1,0,{10,10,10,10,10,10})

LoadSet

Command:

LoadSet(weight,inertia)

Description:

Queue command. Set the weight of the load. This settings only take effect when the current project is
running. After the project stops running, the parameters restore to the original settings.

Required parameter:

weight: weight of the load, the value range cannot exceed the load range of each robot model. Unit:
kg.

235

inertia: inertia of the load, unit: kgm².

Example:

LoadSet(3,0.4)

Set the weight of the load to 3 kg, and the inertia of the load to 0.4 kgm².

LoadSwitch

Command:

LoadSet(status)

Description:

Queue command. Switch on/off the load settings. Load setting is off by default, the collision detection
sensitivity can be improved after it is switched on.

Required parameter:

status: switch of load settings. 0: OFF; 1: ON.

Example:

LoadSwitch(1)

Switch on the load settings.

236

Trajectory

GetTraceStartPose

Command:

GetTraceStartPose(track)

Description:

Get the first point of the trajectory for trajectory fitting (StartTrace).

Required parameter:

track: trajectory filename, with suffix.

Return:

Coordinate of the first point of the trajectory.

StartTrace

Command:

StartTrace(track, "User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1")

Description:

Trajectory fitting. The motion trajectory is fitted and played back based on the points recorded in the
trajectory file, and the motion speed is calculated in the same way as linear motion, which is not affected
by the motion speed at the time of trajectory recording.

Required parameter:

track: trajectory filename, with suffix.

Optional parameter:

User: user coordinate system index, which needs to be referenced here after being added in Settings.
Tool: tool coordinate system index, which needs to be referenced here after being added in Settings.
CP: set continuous path rate in motion (see CP command in Motion parameter), range: 0 - 100.
SpeedS: motion velocity rate, range: 1 - 100.
AccelS: motion acceleration rate, range: 1 - 100.
SYNC: synchronization flag, range: 0 or 1 (default value: 0).
SYNC = 0: asynchronous execution, which means returning immediately after being called,

237

regardless of the execution process.
SYNC = 1: synchronous execution. which means not returning after being called until the command is
executed completely.

Example:

local track = "track.json"
local P1 = GetTraceStartPose(track)
Go(P1)
StartTrace(track)

Fit and play back the trajectories recorded in the track.json file.

GetPathStartPose

Command:

GetPathStartPose(track)

Description:

Get the first point of the trajectory for trajectory playback (StartPath).

Required parameter:

track: trajectory filename, with suffix.

Return:

Coordinates of the first point of the trajectory.

StartPath

Command:

StartPath(track, "User=1 Tool=2 sample = 50 freq = 0.2 Multi=1 isConst=0 isCart=0 isRev=0 isRe
l=0")

Description:

Trajectory fitting. The motion trajectory is fitted and played back based on the points recorded in the
trajectory file, and the motion speed is calculated in the same way as linear motion, which is not affected
by the motion speed at the time of trajectory recording.

Required parameter:

track: trajectory filename, with suffix.

238

Optional parameter:

User: user coordinate system index, which needs to be referenced here after being added in Settings.
Tool: tool coordinate system index, which needs to be referenced here after being added in Settings.
sample: the sampling interval of the trajectory points, i.e. the sampling time differences between two
adjacent points when generating the trajectory file. Range: [8, 1000], unit: ms, 50 by default (the
sample interval when the controller records the trajectory file).
freq: filter coefficient. The smaller the value of this parameter, the smoother the playback trajectory
curve is, but the more severe the distortion relative to the original trajectory. Please set the appropriate
filter coefficient according to the smoothness of the original trajectory. Range: (0,1], 1 refers to
turning off filtering, 0.2 by default.
Multi: speed multiplier in playback, range: [0.1, 2], 1 by default.
isConst: if or not to play back at a constant speed. 0 by default.

0 means the trajectory will be played back at the same speed.
1 means the trajectory will be played back at a constant speed, and the pauses and dead zones in
the trajectory will be removed.

isCart: if or not to use Cartesian points. 0 by default.
0 means the trajectory is planned using the joint points in the trajectory file.
1 means the trajectory is planned using the Cartesian points in the trajectory file. Only the joint
positions are recorded in the trajectory files recorded with DobotStudio Pro or Dobot CRStudio,
please do not set this parameter in playback.

isRev: trajectory reversal. 0 by default.
0 means the trajectory is not reversed.
1 means the trajectory is reversed, taking the ending point in the trajectory file as the starting
point and the starting point as the ending point.

isRel: trajectory offset. 0 by default.
0 means the trajectory is not offset.
1 means the trajectory is offset, taking the current point of the robot arm as the starting point of
the trajectory and offsetting the trajectory as a whole.

Example:

local track = "track.json"
local P1 = GetPathStartPose(track)
Go(P1)
StartPath(track)

Play back the trajectory recorded in the track.json file at the original speed.

239

Vision
The vision module is used to configure relevant camera settings. The camera is fixed within the working
range of the robot. Its position and vision field are fixed. The camera acts as the eye of the robot and
interacts with the robot through Ethernet communication or I/O triggering.

The camera installation and configuration methods vary according to different cameras. This section will
not describe in details.

Configuring vision process

Click Vision Config on the right side of the Vision commands to start configuring the camera. If you
configure the camera for the first time, click New and enter a camera name to create a camera
configuration. Then the following page will be displayed.

Trigger type

Set a type to trigger the camera.

Trigger by IO: Connect the camera to the DO interface of the robot. You need to configure the
corresponding output port according to electrical wiring port.

Trigger by net: Connect the camera to the Ethernet port of the robot. You need to configure the strings
that the robot sends through the network to trigger the camera.

240

Basic network parameters

The basic network parameters are used to set the communication mode between the camera and the robot,
including the following modes.

TCP_Client: TCP communication. The robot serves as the client and the camera as the server. You
need to configure the IP address, port and timeout of the camera.
TCP_Server: TCP communication. The robot serves as the server and the camera as the client. You
need to configure the port and the timeout of the camera.

The receiving method includes two modes: block and non-block. Please select according to the project
script.

Block: After sending the trigger signal, the program will stay at the data-receiving line during the
block time, and the program will continue to execute until the data sent by the camera is received; If
the blocking time is set to 0, the program will wait at the data receiving line until it receives the data
sent by the camera.
Non-block: After sending the trigger signal, the program continues to execute no matter whether the
data from the camera is received or not.

The network accept format refers to the data type sent by the camera used for parse. If the current
default data bit is not enough, you can click Add data bits to increase the length of received data to a
maximum of 8 bits: No, D1, D2, D3, D4, D5, D6, STA, where No indicates the start bit template
number, and STA indicates the end bit (status bit).

You can set a variety of data formats, such as:

Without start bit and end bit: XX, YY, CC;
With a start bit but no end bit: No, XX, YY, CC;
With no start bit but an end bit: XX, YY, CC, STA;
With a start bit and end bit: No, XX, YY, CC, STA;

Click Save on the right-top corner after configuration.

InitCam

Command:

241

InitCam(CAM)

Description:

Connect to the specified camera and initialize it.

Required parameter:

CAM: Name of the camera, which should be consistent with the camera configured in the vision process

Return:

Initialization result.

0: Initialization successful
1: Failed to be initialized

Example:

InitCam(“CAM0”)

Connect to the CAM0 camera and initialize it.

TriggerCam

Command:

TriggerCam(CAM)

Description:

Trigger the initialized camera to take a picture.

Required parameter:

CAM: Name of the camera, which should be consistent with the camera configured in the vision process

Return:

Trigger result.

0: Trigger successfully
1: Fail to trigger

Example:

TriggerCam(“CAM0”)

242

Trigger the CAM0 camera to take a picture.

SendCam

Command:

SendCam(CAM,data)

Description:

Send data to the initialized camera.

Required parameter:

CAM: Name of the camera, which should be consistent with the camera configured in the vision
process
data: data sent to camera

Return:

Result of send data.

0: Send successfully
1: Failed to send

Example:

SendCam(“CAM0”,“0,0,0,0”)

Send data (“0,0,0,0”) to the CAM0 camera.

RecvCam

Command:

RecvCam(CAM,type)

Description:

Receive data from the initialized camera.

Required parameter:

CAM: Name of the camera, which should be consistent with the camera configured in the vision process

Optional parameter:

type: data type, value range: number or string (number by default)

243

Return:

err: error code

0: Receive data correctly
1: Time out
2: Incorrect data format which cannot be parsed
3: Network disconnection

n: number of data groups sent by the camera.

data: data sent by the camera is stored in a two-dimensional array.

Example:

local err,n,data = RecvCam("CAM0","number")

Receive data from the CAM0 camera, and the data type is number.

DestroyCam

Command:

DestroyCam(CAM)

Description:

Release the connection with the camera.

Required parameter:

CAM: Name of the camera, which should be consistent with the camera configured in the vision process

Return:

0: The camera has been disconnected.
1: The camera failed to be disconnected.

Example:

DestroyCam(“CAM0”)

Release the connection with the camera CAM0.

244

Conveyor
The conveyor command must be used with the conveyor process package.

CnvVison

Command:

CnvVison(CnvID)

Description:

Initialize the specified conveyor.

Required parameter:

CnvID: conveyor ID

Return

The setting result.

0: It has been set successfully.
1: It fails to be set.

Example:

CnvVison(0)

Initialize the conveyor numbered 0.

GetCnvObject

Command:

GetCnvObject(CnvID, ObjID)

Description:

Get the data of specified object from the specified conveyor, and detects whether it enters the gripping
area.

Required parameter:

CnvID: conveyor ID.

245

ObjID: object ID.

Return

flag: indicates whether the object is detected. Value range: true or false
typeObject: object type
point: object coordinate {x,y,z}

Example:

flag,typeObject,point = GetCnvObject(0,0)

Get the data of object 0 on conveyor 0.

SetCnvPointOffset

Command:

SetCnvPointOffset(xOffset,yOffset)

Description:

Set the offset of the points in X and Y directions under the conveyor user coordinate system.

Required parameter:

xOffset: X-axis offset, unit: mm
yOffset: Y-axis offset, unit: mm

Return

The setting result.

0: It has been set successfully.
1: It fails to be set.

Example:

SetCnvPointOffset(10,10)

Set the conveyor point offset as X=10 mm and Y=10 mm.

SetCnvTimeCompensation

Command:

SetCnvTimeCompensation(time)

246

Description:

Set time compensation. When the gripping position of the robot arm falls behind the actual position of the
object, it can be adjusted by setting time compensation.

Required parameter:

time: timing offset, unit: ms

Return

The setting result.

0: It has been set successfully.
1: It fails to be set.

Example:

SetCnvTimeCompensation(30)

Set the time compensation to 30 ms.

SyncCnv

Command:

SyncCnv(CnvID)

Description:

Synchronize the specified conveyor. After synchronization, points based on the conveyor user coordinate
system move with the conveyor. The motion command between this command and the StopSyncCnv
command only supports the Move command.

Required parameter:

CnvID: conveyor ID

Return

The synchronization result.

0: It has been synchronized successfully.
1: It fails to be synchronized.

Example:

SyncCnv(0)

247

Synchronize the conveyor numbered 0.

StopSyncCnv

Command:

StopSyncCnv(CnvID)

Description:

Stop synchronizing the conveyor, and only after running this command will it continue to issue other
commands.

Required parameter:

CnvID: conveyor ID

Return

The execution result.

0: It has been executed successfully.
1: It fails to be executed.

Example:

StopSyncCnv(0)

Stop synchronizing the conveyor numbered 0.

248

SafeSkin

SetSafeSkin

Command:

SetSafeSkin(status)

Description:

Enable or disable SafeSkin.

Required parameter:

status: 0 represents disabling SafeSkin, 1 represents enabling SafeSkin. If the Dobot+ inner SafeSkin is off,
this command does not work.

Example:

EnableSafeSkin(1)

Enable SafeSkin.

249

	Preface
	1 Getting Started
	2 Connecting to Robot
	3 Main Interface
	3.1 Overview
	3.2 Top toolbar
	3.3 3D model panel
	3.4 Major function panel
	3.5 Jog board

	4 Setting
	4.1 Tool coordinate system
	4.2 User coordinate system
	4.3 Jog setting
	4.4 Playback setting
	4.5 Safety setting
	4.5.1 Safe collision
	4.5.2 Joint brake
	4.5.3 Terminal load
	4.5.4 Drag sensitivity
	4.5.5 Advanced function

	4.6 Remote control
	4.7 Robot posture
	4.8 Installation
	4.9 Software setting
	4.10 Manufactory
	4.11 Power voltage (CCBOX)

	5 Monitoring
	5.1 IO monitor
	5.2 Modbus
	5.3 Global variable
	5.4 Robot state
	5.5 Run log
	5.6 Dobot+

	6 Programming
	6.1 Blockly
	6.2 Script

	7 Process
	7.1 Trajectory playback
	7.2 Conveyor belt

	8 Best Practice
	Appendix A Modbus Register Definition
	Appendix B Blockly Commands
	B.1 Quick start
	B.1.1 Control robot movement
	B.1.2 Read and write Modbus register data
	B.1.3 Transmit data by TCP communication
	B.1.4 Palletize

	B.2 Block description
	B.2.1 Event
	B.2.2 Control
	B.2.3 Operator
	B.2.4 String
	B.2.5 Custom
	B.2.6 IO
	B.2.7 Motion
	B.2.8 Motion advanced configuration
	B.2.9 Modbus
	B.2.10 TCP

	Appendix C Script Commands
	C.1 Lua basic grammar
	C.1.1 Variable and data type
	C.1.2 Operator
	C.1.3 Process control

	C.2 Command description
	C.2.1 General description
	C.2.2 Motion
	C.2.3 Motion parameter
	C.2.4 Relative motion
	C.2.5 IO
	C.2.6 TCP/UDP
	C.2.7 Modbus
	C.2.8 Program Control
	C.2.9 Trajectory
	C.2.10 Vision
	C.2.11 Conveyor
	C.2.12 SafeSkin

