
Adafruit PiOLED - 128x32 Mini OLED for
Raspberry Pi

Created by lady ada

https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-raspberry-pi

Last updated on 2024-06-03 02:08:19 PM EDT

©Adafruit Industries Page 1 of 13

3

5

12

Table of Contents

Overview

Usage
• Install CircuitPython
• Enable I2C
• Verify I2C Device
• Running Stats on Boot
• Library Usage
• Speeding up the Display

Downloads
• Files
• Schematic & Fabrication Print

©Adafruit Industries Page 2 of 13

Overview

If you're looking for the most compact lil' display for a Raspberry Pi (https://adafru.it/
wF8) (most likely a Pi Zero (https://adafru.it/vIa)) project, this might be just the thing
you need!

The Adafruit PiOLED is your little OLED pal, ready to snap onto any and all Raspberry
Pi computers, to give you a little display. The PiOLED comes with a monochrome
128x32 OLED, with sharp white pixels. The OLED uses only the I2C pins so you have
plenty of GPIO connections available for buttons, LEDs, sensors, etc. It's also nice and
compact so it will fit into any case.

©Adafruit Industries Page 3 of 13

https://www.adafruit.com/category/361
https://www.adafruit.com/category/813

These displays are small, only about 1" diagonal, but very readable due to the high
contrast of an OLED display. This screen is made of 128x32 individual white OLED
pixels and because the display makes its own light, no backlight is required. This
reduces the power required to run the OLED and is why the display has such high
contrast; we really like this miniature display for its crispness!

Using the display is very easy, we have a Python library for the SSD1306 chipset. Our
example code allows you to draw images, text, whatever you like, using the Python
imaging library. Our tests showed 30 FPS update rates so you can do animations or
simple video.

©Adafruit Industries Page 4 of 13

Comes completely pre-assembled and tested so you don't need to do anything but
plug it in and install our Python code! Works with any Raspberry Pi computer,
including the original Pi 1, B+, Pi 2, Pi 3, Pi 4, and Pi Zero.

Usage
Install CircuitPython

This guide assumes that you've gotten your Raspberry Pi up and running, and have
CircuitPython installed. If not, check out the guide:

CircuitPython Installation Guide
https://adafru.it/Deo

To install the library for the Pi OLED (https://adafru.it/u1f), enter the following into the
terminal:

sudo pip3 install adafruit-circuitpython-ssd1306

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

We also need PIL to allow using text with custom fonts. There are several system
libraries that PIL relies on, so installing via a package manager is the easiest way to
bring in everything:

sudo apt-get install python3-pil

Enable I2C

To enable i2c, you can follow our detailed guide on configuring the Pi with I2C
support here. (https://adafru.it/Deo)

After you've enabled I2C you will need to shutdown with sudo shutdown -h now

Once the Pi has halted, plug in the PiOLED. Now you can power the Pi back up, and
log back in. Run the following command from a terminal prompt to scan/detect the
I2C devices

©Adafruit Industries Page 5 of 13

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi#enable-i2c-and-spi-3-5
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi#enable-i2c-and-spi-3-5

sudo i2cdetect -y 1

You should see the following, indicating that address 0x3c (the OLED display) was
found

Verify I2C Device

You can run our stats example, which will query the Pi for details on CPU load, disk
space, etc. and print it on the OLED.

Create a new file with nano ~pi/stats.py and paste this code below in! Then save it.

SPDX-FileCopyrightText: 2017 Tony DiCola for Adafruit Industries
SPDX-FileCopyrightText: 2017 James DeVito for Adafruit Industries
SPDX-License-Identifier: MIT

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

import time
import subprocess

from board import SCL, SDA
import busio
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306

Create the I2C interface.
i2c = busio.I2C(SCL, SDA)

Create the SSD1306 OLED class.
The first two parameters are the pixel width and pixel height. Change these
to the right size for your display!
disp = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c)

Clear display.
disp.fill(0)
disp.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new("1", (width, height))

Get drawing object to draw on image.

©Adafruit Industries Page 6 of 13

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

Draw some shapes.
First define some constants to allow easy resizing of shapes.
padding = -2
top = padding
bottom = height - padding
Move left to right keeping track of the current x position for drawing shapes.
x = 0

Load default font.
font = ImageFont.load_default()

Alternatively load a TTF font. Make sure the .ttf font file is in the
same directory as the python script!
Some other nice fonts to try: http://www.dafont.com/bitmap.php
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 9)

while True:
Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

Shell scripts for system monitoring from here:
https://unix.stackexchange.com/questions/119126/command-to-display-memory-

usage-disk-usage-and-cpu-load
cmd = "hostname -I | cut -d' ' -f1"
IP = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = 'cut -f 1 -d " " /proc/loadavg'
CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\",

$3,$2,$3*100/$2 }'"
MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,$2,$5}\''
Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

Write four lines of text.

draw.text((x, top + 0), "IP: " + IP, font=font, fill=255)
draw.text((x, top + 8), "CPU load: " + CPU, font=font, fill=255)
draw.text((x, top + 16), MemUsage, font=font, fill=255)
draw.text((x, top + 25), Disk, font=font, fill=255)

Display image.
disp.image(image)
disp.show()
time.sleep(0.1)

Run sudo python3 stats.py and you should see something like the following
image:

©Adafruit Industries Page 7 of 13

Running Stats on Boot
You can pretty easily make it so this handy program runs every time you boot your Pi.

The fastest/easiest way is to put it in /etc/rc.local

Run sudo nano /etc/rc.local and add the line

sudo python3 /home/pi/stats.py &

on its own line right before exit 0

Then save and exit. Reboot to verify that the screen comes up on boot!

©Adafruit Industries Page 8 of 13

For more advanced usage, check out our linux system services guide (https://
adafru.it/wFR)

Library Usage

In the examples subdirectory of the Adafruit_CircuitPython_SSD1306
repository (https://adafru.it/EsZ), you'll find examples which demonstrate the usage of
the library.

To help you get started, I'll walk you through the stats.py code you ran earlier, that
way you can use this file as a basis of a future project.

import time
import subprocess

from board import SCL, SDA
import busio
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306

First, a few Python modules are imported. This includes the adafruit_ssd1306
module which contains the OLED driver classes.

To draw images, shapes, and text/fonts, the code imports some of the Python Imaging
Library's modules like Image , ImageDraw , and ImageFont .

Create the I2C interface.
i2c = busio.I2C(SCL, SDA)

©Adafruit Industries Page 9 of 13

file:///home/running-programs-automatically-on-your-tiny-computer/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/master/examples
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/master/examples

Create the SSD1306 OLED class.
The first two parameters are the pixel width and pixel height. Change these
to the right size for your display!
disp = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c)

Since the PiOLED is a 128x32 I2C only device, the screen size and the i2c interface
are passed to the adafruit_ssd.SSD1306_I2C class.

Clear display.
disp.fill(0)
disp.show()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new('1', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

The next chunk of code clears the display by inverting its fill with fill(0) and then
writing to the display with show() .

Then it will configure a PIL drawing class to prepare for drawing graphics. Notice that
the image buffer is created in 1-bit mode with the '1' parameter, this is important
because the display only supports black and white colors.

We then re-draw a large black rectangle to clear the screen. In theory we don't have
to clear the screen again, but its a good example of how to draw a shape!

Draw some shapes.
First define some constants to allow easy resizing of shapes.
padding = -2
top = padding
bottom = height-padding
Move left to right keeping track of the current x position for drawing shapes.
x = 0

Load default font.
font = ImageFont.load_default()

Alternatively load a TTF font. Make sure the .ttf font file is in the
same directory as the python script!
Some other nice fonts to try: http://www.dafont.com/bitmap.php
#font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 9)

Once the display is initialized and a drawing object is prepared, you can draw shapes,
text and graphics using PIL's drawing commands (https://adafru.it/dfH). We'll define
some constraints based on the height and width of the display to allow for easy
resizing of shapes.

©Adafruit Industries Page 10 of 13

http://effbot.org/imagingbook/imagedraw.htm

Then, the code loads the default font, which works fine, but there's other fonts you
can load.

Next the code loads a built-in default font and draws a few lines of text. You can also
load your own TrueType font and use it to render fancy text in any style you like

while True:

 # Draw a black filled box to clear the image.
 draw.rectangle((0, 0, width, height), outline=0, fill=0)

 # Shell scripts for system monitoring from here:
 # https://unix.stackexchange.com/questions/119126/command-to-display-memory-
usage-disk-usage-and-cpu-load
 cmd = "hostname -I | cut -d\' \' -f1"
 IP = subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
 CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\",
$3,$2,$3*100/$2 }'"
 MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")
 cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"
 Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

 # Write four lines of text.

 draw.text((x, top+0), "IP: "+IP, font=font, fill=255)
 draw.text((x, top+8), CPU, font=font, fill=255)
 draw.text((x, top+16), MemUsage, font=font, fill=255)
 draw.text((x, top+25), Disk, font=font, fill=255)

 # Display image.
 disp.image(image)
 disp.show()
 time.sleep(.1)

Using the subprocess class, python can utilize linux commands to access the Pi's
system information. This loop updates the screen at 10 times a second.

That's all there is to the stats.py code!

Speeding up the Display

For the best performance, especially if you are doing fast animations, you'll want to
tweak the I2C core to run at 1MHz. By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

©Adafruit Industries Page 11 of 13

Downloads

Files
EagleCAD PCB files on GitHub (https://adafru.it/wFa)
UG-2832HSWEG02 (https://adafru.it/qrf) Datasheet
SSD1306 (https://adafru.it/aJK) Datasheet
Fritzing object in Adafruit Fritzing Library (https://adafru.it/c7M)

Schematic & Fabrication Print

•
•
•
•

©Adafruit Industries Page 12 of 13

https://github.com/adafruit/Adafruit-PiOLED-128x32-PCB
https://cdn-shop.adafruit.com/datasheets/UG-2832HSWEG02.pdf
http://www.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Fritzing-Library/

©Adafruit Industries Page 13 of 13

	Adafruit PiOLED - 128x32 Mini OLED for Raspberry Pi
	Table of Contents
	Overview
	Usage
	Downloads

	Overview
	Usage
	Install CircuitPython
	Enable I2C
	Verify I2C Device

	Running Stats on Boot
	Library Usage
	Speeding up the Display

	Downloads
	Files
	Schematic & Fabrication Print

