

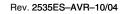
DATA SHEET

Order code	Manufacturer code	Description
73-4308	ATTINY13-20PU	ATTINY13-20PU 8-BIT MICRO 1K DIL-8 (RC)

	Page 1 of 19
The enclosed information is believed to be correct, Information may change 'without notice' due to	Revision A
product improvement. Users should ensure that the product is suitable for their use. E. & O. E.	04/07/2003

Sales: 01206 751166 Technical: 01206 835555 Fax: 01206 7551188 Sales@rapidelec.co.uk Tech@rapidelec.co.uk www.rapidelectronics.co.uk

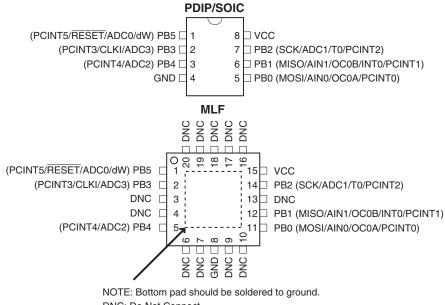
Features


- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 120 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 20 MIPS Througput at 20 MHz
- Non-volatile Program and Data Memories
 - 1K Byte of In-System Programmable Program Memory Flash Endurance: 10,000 Write/Erase Cycles
 - 64 Bytes In-System Programmable EEPROM Endurance: 100,000 Write/Erase Cycles
 - 64 Bytes Internal SRAM
 - Programming Lock for Self-Programming Flash Program and EEPROM Data Security
- Peripheral Features
 - One 8-bit Timer/Counter with Prescaler and Two PWM Channels
 - 4-channel, 10-bit ADC with Internal Voltage Reference
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
- Special Microcontroller Features
 - debugWIRE On-chip Debug System
 - In-System Programmable via SPI Port
 - External and Internal Interrupt Sources
 - Low Power Idle, ADC Noise Reduction, and Power-down Modes
 - Enhanced Power-on Reset Circuit
 - Programmable Brown-out Detection Circuit
 - Internal Calibrated Oscillator
- I/O and Packages
 - 8-pin PDIP/SOIC: Six Programmable I/O Lines
 - 20-pad MLF: Six Programmable I/O Lines
- · Operating Voltage:
 - 1.8 5.5V for ATtiny13V
 - 2.7 5.5V for ATtiny13
- Speed Grade
 - ATtiny13V: 0 4 MHz @ 1.8 5.5V, 0 10 MHz @ 2.7 5.5V
 - ATtiny13: 0 10 MHz @ 2.7 5.5V, 0 20 MHz @ 4.5 5.5V
- Industrial Temperature Range
- Low Power Consumption
 - Active Mode:
 - 1 MHz, 1.8V: 240μA
 - Power-down Mode:
 - < 0.1µA at 1.8V

8-bit **AVR**®
Microcontroller with 1K Bytes
In-System
Programmable
Flash

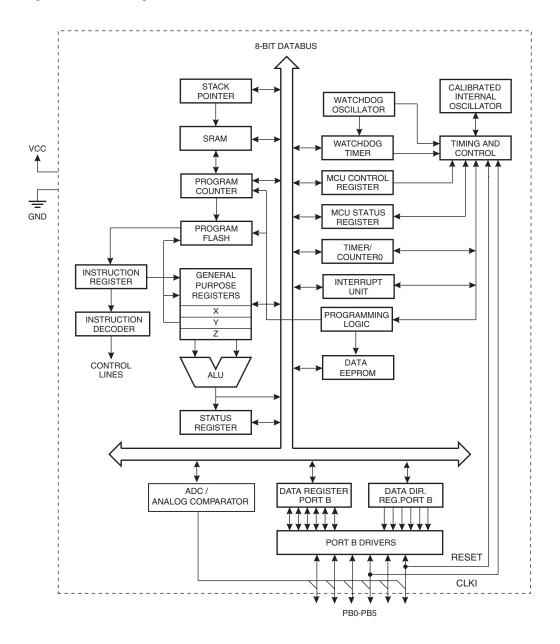
ATtiny13

Preliminary Summary



Pin Configurations

Figure 1. Pinout ATtiny13


DNC: Do Not Connect

Overview

The ATtiny13 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny13 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

Block Diagram

Figure 2. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATtiny13 provides the following features: 1K byte of In-System Programmable Flash, 64 bytes EEPROM, 64 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working registers, one 8-bit Timer/Counter with compare modes, Internal and External Interrupts, a 4-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. The Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code running on the AVR core.

The ATtiny13 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

Pin Descriptions

Port B (PB5..PB0)

VCC Digital supply voltage.

GND Ground.

Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATtiny13 as listed on page 50.

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 12 on page 31. Shorter pulses are not guaranteed to generate a reset.

RESET

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F	SREG	I	T	Н	S	V	N	Z	С	page 7
0x3E	Reserved	-	_	_	_	-	-	-	-	
0x3D	SPL				SP	[7:0]				page 9
0x3C	Reserved					_				
0x3B	GIMSK	-	INT0	PCIE	-	-	-	-	-	page 55
0x3A	GIFR	-	INTF0	PCIF	_	-	-	-	-	page 55
0x39	TIMSK0	-	_	_	-	OCIE0B	OCIE0A	TOIE0	-	page 72
0x38	TIFR0	-	_	-	_	OCF0B	OCF0A	TOV0	-	page 73
0x37	SPMCSR	-	-		СТРВ	RFLB	PGWRT	PGERS	SELFPRGEN	page 99
0x36	OCR0A					ut Compare Reg				page 72
0x35	MCUCR	-	PUD	SE	SM1	SM0	-	ISC01	ISC00	page 50
0x34	MCUSR	-	- FOCOR	-	-	WDRF	BORF	EXTRF	PORF	page 34
0x33	TCCR0B	FOC0A	FOC0B	-	Time as /Ca	WGM02	CS02	CS01	CS00	page 68
0x32 0x31	TCNT0 OSCCAL					unter (8-bit) oration Register				page 72
0x30	Reserved				Oscillator Calil	bration Register				page 23
0x2F	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	_	_	WGM01	WGM00	page 71
0x2E	DWDR	COMOAT	COMOAU	COMODI		PR[7:0]	_	Walviot	Walvioo	page 71
0x2D	Reserved					- -				page 30
0x2C	Reserved									
0x2B	Reserved					_				
0x2A	Reserved					_				
0x29	OCR0B			Timer	/Counter – Outo	ut Compare Rec	ister B			page 72
0x28	GTCCR	TSM	_	-		-	_	-	PSR10	page 75
0x27	Reserved			1		_				1.10.
0x26	CLKPR	CLKPCE	-	_	_	CLKPS3	CLKPS2	CLKPS1	CLKPS0	page 25
0x25	Reserved			1		-	•			1 0
0x24	Reserved					_				
0x23	Reserved					_				
0x22	Reserved					_				
0x21	WDTCR	WDTIF	WDTIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	page 39
0x20	Reserved					_				
0x1F	Reserved					_				
0x1E	EEARL	-	-				dress Register			page 15
0x1D	EEDR					ata Register				page 15
0x1C	EECR	-	_	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	page 16
0x1B	Reserved									
0x1A	Reserved									
0x19	Reserved				•	_				
0x18	PORTB	-	-	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 52
0x17	DDRB	-	-	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 52
0x16 0x15	PINB PCMSK	-	-	PINB5 PCINT5	PINB4 PCINT4	PINB3 PCINT3	PINB2 PCINT2	PINB1 PCINT1	PINB0 PCINT0	page 52
0x14	DIDR0	_		ADC0D	ADC2D	ADC3D	ADC1D	AIN1D	AIN0D	page 56
0x14 0x13	Reserved	_		ADCOD		- ADC3D	ADOID	AINID	AIINUD	page 78, page 93
0x12	Reserved					_				
0x12	Reserved					_				
0x10	Reserved					_				
0x0F	Reserved					_				
0x0E	Reserved					_				
0x0D	Reserved					_				
0x0C	Reserved					_				
0x0B	Reserved					_				
0x0A	Reserved					_				
0x09	Reserved					_				
0x08	ACSR	ACD	ACBG	ACO	ACI	ACIE	-	ACIS1	ACIS0	page 76
0x07	ADMUX	-	REFS0	ADLAR	-	-	-	MUX1	MUX0	page 90
0x06	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	page 91
0x05	ADCH					gister High Byte				page 92
0x04	ADCL					gister Low Byte	1		,	page 92
0x03	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	page 93
0x02	Reserved									
0x01	Reserved					_				
0x00	Reserved					=				

Note:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

Instruction Set Summary

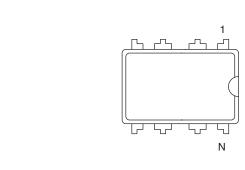
Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND L	OGIC INSTRUCTIONS	8		1	
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \ v \ Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	Rd ← 0xFF – Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd v K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd – 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← 0xFF	None	1
BRANCH INSTRUCT	IONS				
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC ← PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N ⊕ V= 0) then PC ← PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N ⊕ V= 1) then PC ← PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2
BIT AND BIT-TEST I			T	Tie	ı
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1

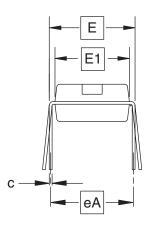
Mnemonics	Operands	Description	Operation	Flags	#Clocks
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	Rd(b) ← T	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	C	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I←1	1	1
CLI		Global Interrupt Disable	1←0	<u> </u>	1
SES		Set Signed Test Flag	S ← 1	S	1
				S	1
CLS		Clear Signed Test Flag	S ← 0 V ← 1	V	1
SEV		Set Twos Complement Overflow.		V	
CLV		Clear Twos Complement Overflow	V ← 0		1
SET	1	Set T in SREG	T ← 1	T -	1
CLT	1	Clear T in SREG	T ← 0	T	1
SEH		Set Half Carry Flag in SREG	H ← 1	H	1
CLH	<u> </u>	Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER				1	
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, Rd $\leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, Rd \leftarrow (Z)	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	(Y) ← Rr, Y ← Y + 1	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	Y ← Y - 1, (Y) ← Rr	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z+q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM	K, Tti	Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory Load Program Memory and Post-Inc	$Rd \leftarrow (Z)$ $Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM	1 IU, ∠T	Store Program Memory	$(z) \leftarrow R1:R0$	None	3
	Pd P	,			1
IN	Rd, P	In Port	Rd ← P	None	1 1
OUT	P, Rr	Out Port	P ← Rr	None	1 0
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL IN	STRUCTIONS	The second		T	1
NOP	 	No Operation		None	1
SLEEP	1	Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/Timer)	None	1
BREAK		Break	For On-chip Debug Only		N/A

Ordering Information

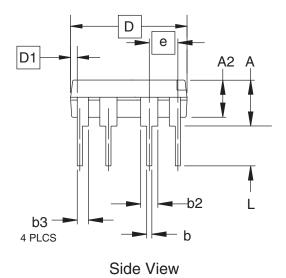
Speed (MHz) ⁽³⁾	Power Supply	Ordering Code	Package ⁽¹⁾	Operation Range
10	1.8 - 5.5	ATtiny13V-10PI ATtiny13V-10PU ⁽²⁾ ATtiny13V-10SI ATtiny13V-10SU ⁽²⁾ ATtiny13V-10SSI ATtiny13V-10SSU ⁽²⁾ ATtiny13V-10MI ATtiny13V-10MU ⁽²⁾	8P3 8P3 8S2 8S2 S8S1 S8S1 20M1 20M1	Industrial (-40°C to 85°C)
20	2.7 - 5.5	ATtiny13-20PI ATtiny13-20PU ⁽²⁾ ATtiny13-20SI ATtiny13-20SU ⁽²⁾ ATtiny13-20SSI ATtiny13-20SSU ⁽²⁾ ATtiny13-20MI ATtiny13-20MU ⁽²⁾	8P3 8P3 8S2 8S2 8SS1 S8S1 20M1 20M1	Industrial (-40°C to 85°C)

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
 - 2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green
 - 3. For Speed vs. $\rm V_{\rm CC}$, see "Maximum Speed vs. VCC" on page 121.


Package Type				
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
8S2	8-lead, 0.209" Wide, Plastic Small Outline Package (EIAJ SOIC)			
S8S1	8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC)			
20M1	20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF)			



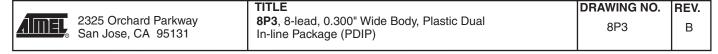
Packaging Information

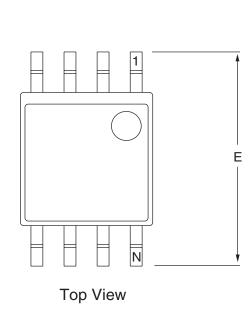

8P3

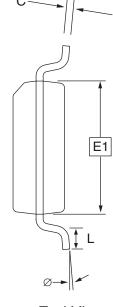
Top View

End View

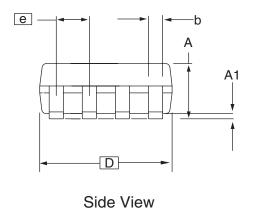
COMMON DIMENSIONS


(Unit of Measure = inches)

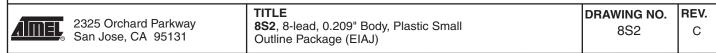

SYMBOL	MIN	NOM	MAX	NOTE
Α			0.210	2
A2	0.115	0.130	0.195	
b	0.014	0.018	0.022	5
b2	0.045	0.060	0.070	6
b3	0.030	0.039	0.045	6
С	0.008	0.010	0.014	
D	0.355	0.365	0.400	3
D1	0.005			3
Е	0.300	0.310	0.325	4
E1	0.240	0.250	0.280	3
е	0.100 BSC			
eA	0.300 BSC			4
L	0.115	0.130	0.150	2


Notes

- 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
- 2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
- 3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
- 4. E and eA measured with the leads constrained to be perpendicular to datum.
- 5. Pointed or rounded lead tips are preferred to ease insertion.
- 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).

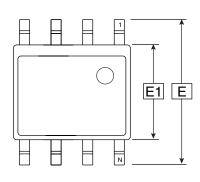

01/09/02

End View

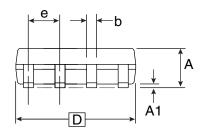

COMMON DIMENSIONS (Unit of Measure = mm)

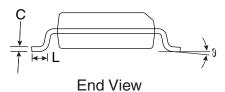
SYMBOL	MIN	NOM	MAX	NOTE
Α	1.70		2.16	
A1	0.05		0.25	
b	0.35		0.48	5
С	0.15		0.35	5
D	5.13		5.35	
E1	5.18		5.40	2, 3
E	7.70		8.26	
L	0.51		0.85	
Ø	0°		8°	
е		1.27 BSC		4

Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.


- Mismatch of the upper and lower dies and resin burrs are not included.
- 3. It is recommended that upper and lower cavities be equal. If they are different, the larger dimension shall be regarded.
- 4. Determines the true geometric position.
- 5. Values b and C apply to pb/Sn solder plated terminal. The standard thickness of the solder layer shall be 0.010 +0.010/-0.005 mm.

10/7/03



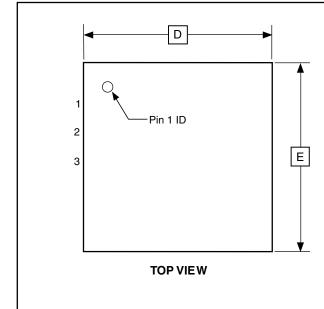

S8S1

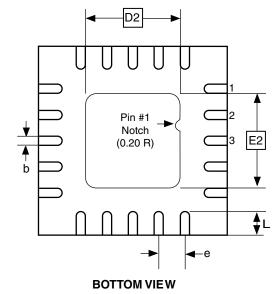
Top View

Side View

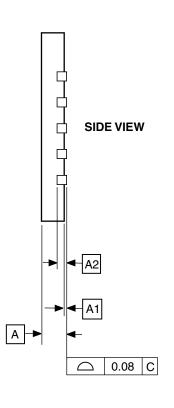
COMMON DIMENSIONS

(Unit of Measure = mm)


SYMBOL	MIN	NOM	MAX	NOTE
E	5.79		6.20	
E1	3.81		3.99	
Α	1.35		1.75	
A1	0.1		0.25	
D	4.80		4.98	
С	0.17		0.25	
b	0.31		0.51	
L	0.4		1.27	
е				
9	0°		8°	


Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-012 for proper dimensions, tolerances, datums, etc.

7/28/03


2325 Orchard Parkway San Jose, CA 95131	S8S1, 8-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline (JEDEC SOIC)	S8S1	REV. A
--	--	------	-----------

20M1

Note: Reference JEDEC Standard MO-220, Fig. 1 (SAW Singulation) WGGD-5.

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE		
Α	0.70	0.75	0.80			
A1	_	0.01	0.05			
A2		0.20 REF				
b	0.18	0.23	0.30			
D		4.00 BSC				
D2	2.45	2.60	2.75			
Е		4.00 BSC				
E2	2.45	2.60	2.75			
е						
L	0.35	0.40	0.55			

10/27/04

2325 Orchard Parkway San Jose, CA 95131

TITLE 20M1, 20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm, 2.6 mm Exposed Pad, Micro Lead Frame Package (MLF)

DRAWING NO. 20M1 REV.

Errata

The revision letter in this section refers to the revision of the ATtiny13 device.

ATtiny13 Rev. D

• EEPROM can not be written below 1.9 Volt

1. EEPROM can not be written below 1.9 Volt

Writing the EEPROM at V_{CC} below 1.9 volts might fail.

Problem Fix/Workaround

Do not write the EEPROM when $V_{\rm CC}$ is below 1.9 volts.

ATtiny13 Rev. B

- . Wrong values read after Erase Only operation
- High Voltage Serial Programming Flash, EEPROM, Fuse and Lock Bits may fail
- · Device may lock for further programming
- debugWIRE communication not blocked by lock-bits
- Watchdog Timer Interrupt disabled
- EEPROM can not be written below 1.9 Volt

1. Wrong values read after Erase Only operation

At supply voltages below 2.7 V, an EEPROM location that is erased by the Erase Only operation may read as programmed (0x00).

Problem Fix/Workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed.

2. High Voltage Serial Programming Flash, EEPROM, Fuse and Lock Bits may fail

Writing to any of these locations and bits may in some occasions fail.

Problem Fix/Workaround

After a writing has been initiated, always observe the RDY/BSY signal. If the writing should fail, rewrite until the RDY/BSY verifies a correct writing. This will be fixed in revision D.

3. Device may lock for further programming

Special combinations of fuse bits will lock the device for further programming effectively turning it into an OTP device. The following combinations of settings/fuse bits will cause this effect:

- 128 kHz internal oscillator (CKSEL[1..0] = 11), shortest start-up time (SUT[1..0] = 00), Debugwire enabled (DWEN = 0) or Reset disabled RSTDISBL = 0.
- 9.6 MHz internal oscillator (CKSEL[1..0] = 10), shortest start-up time (SUT[1..0] = 00), Debugwire enabled (DWEN = 0) or Reset disabled RSTDISBL = 0.
- 4.8 MHz internal oscillator (CKSEL[1..0] = 01), shortest start-up time (SUT[1..0] = 00), Debugwire enabled (DWEN = 0) or Reset disabled RSTDISBL = 0.

Problem fix/ Workaround

Avoid the above fuse combinations. Selecting longer start-up time will eliminate the problem.

4. debugWIRE communication not blocked by lock-bits

When debugWIRE on-chip debug is enabled (DWEN = 0), the contents of program memory and EEPROM data memory can be read even if the lock-bits are set to block further reading of the device.

Problem fix/ Workaround

Do not ship products with on-chip debug of the tiny13 enabled.

5. Watchdog Timer Interrupt disabled

If the watchdog timer interrupt flag is not cleared before a new timeout occurs, the watchdog will be disabled, and the interrupt flag will automatically be cleared. This is only applicable in interrupt only mode. If the Watchdog is configured to reset the device in the watchdog time-out following an interrupt, the device works correctly.

Problem fix / Workaround

Make sure there is enough time to always service the first timeout event before a new watchdog timeout occurs. This is done by selecting a long enough time-out period.

6. EEPROM can not be written below 1.9 Volt

Writing the EEPROM at V_{CC} below 1.9 volts might fail.

Problem Fix/Workaround

Do not write the EEPROM when V_{CC} is below 1.9 volts.

ATtiny13 Rev. A

Revision A has not been sampled.

Datasheet Revision History

Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision.

Changes from Rev. 2535D-04/04 to Rev. 2535E-10/04

- 1. Bits EEMWE/EEWE changed to EEMPE/EEPE in document.
- 2. Updated "Pinout ATtiny13" on page 2.
- 3. Updated "Write Fuse Low Bits" in Table 55 on page 116, Table 57 on page 120.
- 2. Added "Pin Change Interrupt Timing" on page 53.
- 4. Updated "General Interrupt Mask Register GIMSK" on page 55.
- 5. Updated "Pin Change Mask Register PCMSK" on page 56.
- 6. Updated item 4 in "Serial Programming Algorithm" on page 107.
- 7. Updated "Enter High-voltage Serial Programming Mode" on page 112.
- 8. Updated "DC Characteristics" on page 119.
- 9. Updated "ATtiny13 Typical Characteristics" on page 123.
- 10. Updated "Ordering Information" on page 9.
- 11. Updated "Packaging Information" on page 10.
- 12. Updated "Errata" on page 14.

Changes from Rev. 2535C-02/04 to Rev. 2535D-04/04

- 1. Maximum Speed Grades changed
 - 12MHz to 10MHz
 - 24MHz to 20MHz
- 2. Updated "Serial Programming Instruction Set" on page 109.
- 3. Updated "Maximum Speed vs. VCC" on page 121
- 4. Updated "Ordering Information" on page 9

Changes from Rev. 2535B-01/04 to Rev. 2535C-02/04

- 1. C-code examples updated to use legal IAR syntax.
- 2. Replaced occurrences of WDIF with WDTIF and WDIE with WDTIE.
- 3. Updated "Stack Pointer" on page 9.
- 4. Updated "Calibrated Internal RC Oscillator" on page 23.
- 5. Updated "Oscillator Calibration Register OSCCAL" on page 23.
- 6. Updated typo in introduction on "Watchdog Timer" on page 36.
- 7. Updated "ADC Conversion Time" on page 84.
- 8. Updated "Serial Downloading" on page 106.
- 9. Updated "Electrical Characteristics" on page 119.
- 10. Updated "Ordering Information" on page 9.
- 11. Removed rev. C from "Errata" on page 14.

Changes from Rev. 2535A-06/03 to Rev. 2535B-01/04

- 1. Updated Figure 2 on page 3.
- 2. Updated Table 12 on page 31, Table 17 on page 40, Table 37 on page 91 and Table 57 on page 120.
- 3. Updated "Calibrated Internal RC Oscillator" on page 23.
- 4. Updated the whole "Watchdog Timer" on page 36.

- 5. Updated Figure 54 on page 106 and Figure 57 on page 111.
- 6. Updated registers "MCU Control Register MCUCR" on page 50, "Timer/Counter Control Register B TCCR0B" on page 71 and "Digital Input Disable Register 0 DIDR0" on page 78.
- 7. Updated Absolute Maximum Ratings and DC Characteristics in "Electrical Characteristics" on page 119.
- 8. Added "Maximum Speed vs. VCC" on page 121
- 9. Updated "ADC Characteristics Preliminary Data" on page 122.
- 10. Updated "ATtiny13 Typical Characteristics" on page 123.
- 11. Updated "Ordering Information" on page 9.
- 12. Updated "Packaging Information" on page 10.
- 13. Updated "Errata" on page 14.
- 14. Changed instances of EEAR to EEARL.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France

Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0

Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2004. All rights reserved. Atmel[®], logo and combinations thereof, AVR[®], and AVR Studio[®] are registered trademarks, and Everywhere You AreSM are the trademarks of Atmel Corporation or its subsidiaries. Microsoft[®], Windows[®], Windows NT[®], and Windows XP[®] are the registered trademarks of Microsoft Corporation. Other terms and product names may be trademarks of others.

