Motor and power drivers

Order code	Manufacturer code	Description
$82-0192$	L293D	L293D STEPPER MOTOR CONTROL/DRIVER (RC)

PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES

- 600mA OUTPUT CURRENT CAPABILITY PER CHANNEL
- 1.2A PEAK OUTPUT CURRENT (non repetitive) PER CHANNEL
- ENABLEFACILITY
- OVERTEMPERATURE PROTECTION
- LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)
- INTERNAL CLAMP DIODES

DESCRIPTION

The Device is a monolithic integrated high voltage, high current four channel driver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relays solenoides, DC and stepping motors) and switching power transistors.
To simplify use as two bridges each pair of channels is equipped with an enable input. A separate supply input is provided for the logic, allowing operation at a lower voltage and internal clamp diodes are included.
This device is suitable for use in switching applications at frequencies up to 5 kHz .

The L293D is assembled in a 16 lead plastic packaage which has 4 center pins connected together and used for heatsinking
The L293DD is assembled in a 20 lead surface mount which has 8 center pins connected together and used for heatsinking.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{S}	Supply Voltage	36	V
$\mathrm{~V}_{\mathrm{SS}}$	Logic Supply Voltage	36	V
$\mathrm{~V}_{\mathrm{i}}$	Input Voltage	7	V
$\mathrm{~V}_{\text {en }}$	Enable Voltage	7	V
I_{0}	Peak Output Current $(100 \mu \mathrm{~s}$ non repetitive $)$	1.2	A
$\mathrm{P}_{\text {tot }}$	Total Power Dissipation at $\mathrm{T}_{\text {pins }}=90^{\circ} \mathrm{C}$	4	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and Junction Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

PIN CONNECTIONS (Top view)

THERMAL DATA

Symbol	Decription	DIP	SO	Unit	
$\mathrm{R}_{\mathrm{th} \mathrm{h} \text {-pins }}$	Thermal Resistance Junction-pins	max.	-	14	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} \mathrm{h} \text {-amb }}$	Thermal Resistance junction-ambient	max.	80	$50\left({ }^{*}\right)$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} j \text {-case }}$	Thermal Resistance Junction-case	max.	14	-	

(*) With 6sq. cm on board heatsink.

ELECTRICAL CHARACTERISTICS (for each channel, $\mathrm{Vs}=24 \mathrm{~V}, \mathrm{Vss}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{S}	Supply Voltage (pin 10)		$\mathrm{V}_{\text {SS }}$		36	V
$\mathrm{V}_{\text {SS }}$	Logic Supply Voltage (pin 20)		4.5		36	V
Is	Total Quiescent Supply Current (pin 10)	$\mathrm{V}_{\mathrm{i}}=\mathrm{L} ; \mathrm{I}_{\mathrm{O}}=0 ; \mathrm{V}_{\text {en }}=\mathrm{H}$		2	6	mA
		$\mathrm{V}_{\mathrm{V}}=\mathrm{H} ; \mathrm{I}_{\mathrm{O}}=0 ; \mathrm{V}_{\text {en }}=\mathrm{H}$		16	24	mA
		$V_{\text {en }}=L$			4	mA
Iss	Total Quiescent Logic Supply Current (pin 20)	$\mathrm{V}_{\mathrm{i}}=\mathrm{L} ; \mathrm{l}_{0}=0 ; \mathrm{V}_{\text {en }}=\mathrm{H}$		44	60	mA
		$\mathrm{V}_{\mathrm{i}}=\mathrm{H} ; \mathrm{l}_{0}=0 ; \mathrm{V}_{\text {en }}=\mathrm{H}$		16	22	mA
		$\mathrm{V}_{\text {en }}=\mathrm{L}$		16	24	mA
VIL	Input Low Voltage (pin 2, 9, 12, 19)		-0.3		1.5	V
V_{IH}	Input High Voltage (pin 2, 9, 12, 19)	$\mathrm{V}_{\text {SS }} \leq 7 \mathrm{~V}$	2.3		$\mathrm{V}_{\text {SS }}$	V
		$\mathrm{V}_{\text {SS }}>7 \mathrm{~V}$	2.3		7	V
IIL	Low Voltage Input Current (pin $2,9,12,19)$	$\mathrm{V}_{\mathrm{IL}}=1.5 \mathrm{~V}$			-10	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High Voltage Input Current (pin $2,9,12,19)$	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IH}} \leq \mathrm{V}_{\text {SS }}-0.6 \mathrm{~V}$		30	100	$\mu \mathrm{A}$
$V_{\text {en }} \mathrm{L}$	Enable Low Voltage (pin 1, 11)		-0.3		1.5	V
$\mathrm{V}_{\text {en }} \mathrm{H}$	Enable High Voltage (pin 1, 11)	$\mathrm{V}_{\mathrm{sS}} \leq 7 \mathrm{~V}$	2.3		$\mathrm{V}_{\text {SS }}$	V
		$\mathrm{V}_{\text {SS }}>7 \mathrm{~V}$	2.3		7	V
len L	Low Voltage Enable Current (pin 1, 11)	$\mathrm{V}_{\text {en }} \mathrm{L}=1.5 \mathrm{~V}$		-30	-100	$\mu \mathrm{A}$
$\mathrm{l}_{\text {en }}$	High Voltage Enable Current (pin 1, 11)	$2.3 \mathrm{~V} \leq \mathrm{V}_{\text {en }} \leq \mathrm{V}_{\text {SS }}-0.6 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CE(sat) }}$	Source Output Saturation Voltage (pins 3, 8, 13, 18)	$\mathrm{l}_{0}=-0.6 \mathrm{~A}$		1.4	1.8	V
$\mathrm{V}_{\mathrm{CE} \text { (sat)L }}$	Sink Output Saturation Voltage (pins 3, 8, 13, 18)	$\mathrm{l} \mathrm{l}=+0.6 \mathrm{~A}$		1.2	1.8	V
V_{F}	Clamp Diode Forward Voltage	$10=600 \mathrm{nA}$		1.3		V
t_{r}	Rise Time (*)	0.1 to $0.9 \mathrm{~V}_{0}$		250		ns
t_{f}	Fall Time (*)	0.9 to $0.1 \mathrm{~V}_{0}$		250		ns
$\mathrm{t}_{\text {on }}$	Turn-on Delay (*)	$0.5 \mathrm{~V}_{\mathrm{i}}$ to $0.5 \mathrm{~V}_{\mathrm{O}}$		750		ns
$\mathrm{t}_{\text {off }}$	Turn-off Delay (*)	$0.5 \mathrm{~V}_{\mathrm{i}}$ to $0.5 \mathrm{~V}_{\mathrm{o}}$		200		ns

(*) See fig. 1.

TRUTH TABLE (one channel)

Input	Enable (*)	Output
H	H	H
L	H	L
H	L	Z
L		

Z = High output impedance
(*) Relative to the considered channel

Figure 1: Switching Times

Figure 2: Junction to ambient thermal resistance vs. area on board heatsink (SO12+4+4 package)

msa $29301-4$

POWERDIP16 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.85		1.40	0.033		0.055
b		0.50			0.020	
b1	0.38		0.50	0.015		0.020
D			20.0		0.346	0.787
E		2.54			0.100	
e		17.78				
e3						
F						
I						
L						0.10
Z						0.280

SO20 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
c		0.5			0.020	
c1		45			1.772	
D		1	12.6		0.039	0.496
E	10		10.65	0.394		0.419
e		1.27			0.050	
e3		11.43			0.450	
F		1	7.4		0.039	0.291
G	8.8		9.15	0.346		0.360
L	0.5		1.27	0.020		0.050
M			0.75			0.030
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as criticalcomponents in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1996 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

