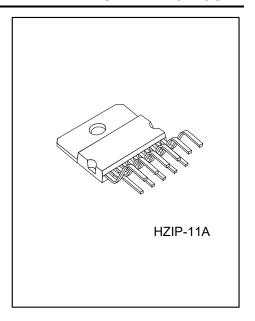
UNISONIC TECHNOLOGIES CO., LTD

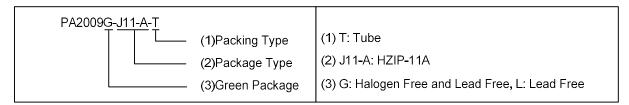
PA2009

LINEAR INTEGRATED CIRCUIT

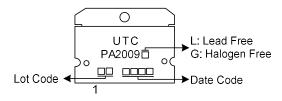

10 +10W STEREO AMPLIFIER

DESCRIPTION

The UTC PA2009 is a class AB stereo audio power amplifier that contains two identical amplifiers capable of delivering 10W per channel. It is designed for quality Hi-Fi stereo application which is easy to construct and has a minimum need of external components.

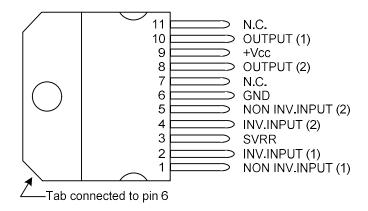

FEATURES

- * Supply range 8V ~ 28V
- * High power outputs (10W/Channel)
- * High output current up to 3.5A
- * Short circuit protection
- * Thermal protection

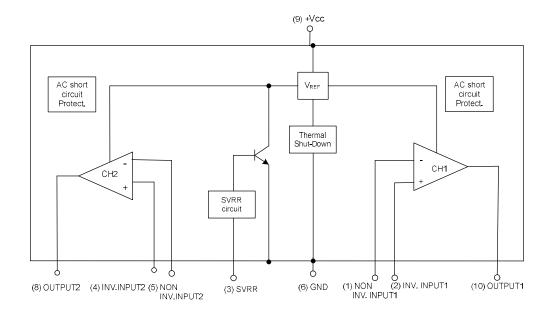


ORDERING INFORMATION

Ordering	Package	Packing	
Lead Free	Lead Free Halogen Free		
PA2009L-J11-A-T	PA2009G-J11-A-T	HZIP-11A	Tube



MARKING



www.unisonic.com.tw 1 of 5

■ PIN CONFIGURATION

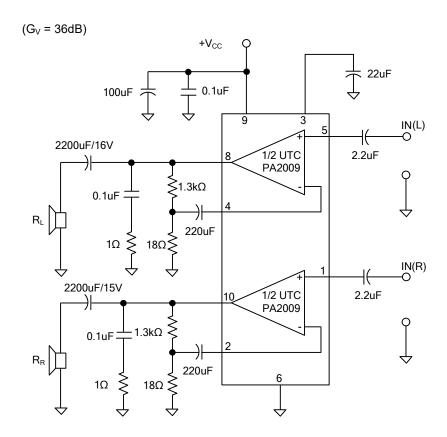
■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

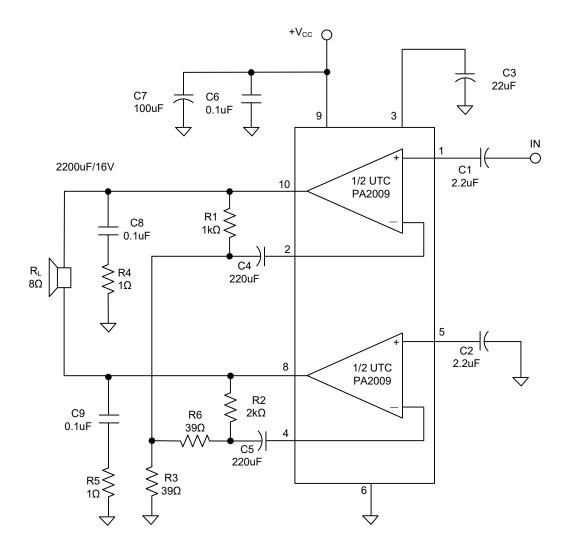
PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V_{CC}	28	V
Peak Output Current	repetitive, f ≥ 20Hz		3.5	Α
	non repetitive, tp=100µs	IO(PEAK)	4.5	Α
Power Dissipation @ T _C = 90°C		P_D	20	W
Junction Temperature		T_J	+150	°C
Storage Temperature		T_{STG}	-40 ~ +150	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA


PARAMETER	SYMBOL	RATING	UNIT
Thermal Resistance Junction to Case	θ_{JC}	3.0	°C/W

■ ELECTRICAL CHARACTERISTICS


(Refer to test circuit, Ta= 25°C, Vcc = 24V, G_V = 36dB, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage		V _{CC}		8		28	V
Quiescent Output Voltage		V _{OUT}	V _{CC} = 24V		11.5		V
Input Saturation Voltage (rms)		V _{IN(SAT)}		300			mV
Total Input Noise Voltage		e _N	$R_g = 10K\Omega$, 22Hz~22KHz		2.5	8	μV
Total Quiescent Drain Current		IQ	V _{CC} = 24V		60	120	mA
Output Power for each channel	$R_L = 4\Omega$		THD=1%, V _{CC} =24V, f=1kHz		12.5		W
	$R_L = 8\Omega$				7		W
	$R_L = 4\Omega$		f = 40Hz ~12.5kHz	10			W
	$R_L = 8\Omega$	P _{OUT}	1 - 40112 ~ 12.5KHZ	5			W
	$R_L = 4\Omega$		\/ - 40\/ f - 4 -		7		W
	$R_L = 8\Omega$		V _{CC} = 18V, f = 1kHz		4		W
Total Harmonic Distortion for each channel	$R_L = 4\Omega$	THD	$P_{OUT} = 0.1 \sim 7.0 \text{W}$ f = 1kHz,		0.2		%
	$R_L = 8\Omega$		P _{OUT} = 0.1~3.5W V _{CC} =24V		0.1		%
	$R_L = 4\Omega$		$P_{OUT} = 0.1 \sim 5.0 \text{W}$ $V_{CC} = 18 \text{V}$		0.2		%
	$R_L = 8\Omega$		$P_{OUT} = 0.1 \sim 2.5W$		0.1		%
Input Resistance		R _{IN}	f = 1kHz, Non-Inverting Input	70	200		kΩ
Frequency Roll off (-3dB)	Low	fL	$R_L = 4\Omega$		20		Hz
	High	f _H	$R_L = 4\Omega$		80		kHz
Closed Loop Voltage Gain		Gv	f = 1kHz	35.5	36	36.5	dB
Closed Loop Gain Matching		ΔGv			0.5		dB
Cross Talk	f = 1kHz	— ст	D 10KO		60		dB
	f = 10kHz		R _L = ∞, Rg = 10KΩ		50		ub
Supply Voltage Rejection for each channel		SVR	f_{RIPPLE} = 100Hz, V_{RIPPLE} = 0.5V, R_g = 10k Ω		55		dB
Thermal Shut-Down Junction Temperature					145		°C

■ TEST AND APPLICATION CIRCUIT

■ TEST AND APPLICATION CIRCUIT (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.