Order code	Manufacturer code	Description
$83-0880$	n / a	74HC259D 8-BIT ADDRESSABLE LATCH SO16 RC

	Page 1 of 12
The enclosed information is believed to be correct, Information may change óvithout noticeôdue to product improvement. Users should ensure that the product is suitable for their use. E. \& O. E.	Revision A
$20 / 02 / 2007$	

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT259 8-bit addressable latch

File under Integrated Circuits, IC06

FEATURES

- Combines demultiplexer and 8-bit latch
- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Common reset input
- Useful as a 3-to-8 active HIGH decoder
- Output capability: standard
- I ${ }_{\text {CC }}$ category: MSI

GENERAL DESCRIPTION

The 74HC/HCT259 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} / \mathrm{HCT} 259$ are high-speed 8-bit addressable latches designed for general purpose storage applications in digital systems. The "259" are multifunctional devices
capable of storing single-line data in eight addressable latches, and also 3-to-8 decoder and demultiplexer, with active HIGH outputs (Q_{0} to Q_{7}), functions are available.

The "259" also incorporates an active LOW common reset $(\overline{\mathrm{MR}})$ for resetting all latches, as well as, an active LOW enable input ($\overline{\mathrm{LE}}$).

The "259" has four modes of operation as shown in the mode select table. In the addressable latch mode, data on the data line (D) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs.

In the 3-to-8 decoding or demultiplexing mode, the addressed output follows the state of the D input with all other outputs in the LOW state. In the reset mode all outputs are LOW and unaffected by the address (A_{0} to A_{2}) and data (D) input. When operating the "259" as an addressable latch, changing more than one bit of address could impose a transient-wrong address. Therefore, this should only be done while in the memory mode. The mode select table summarizes the operations of the " 259 ".

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PHL/ }} \mathrm{t}_{\text {PLH }}$	propagation delay	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			
	D to Q_{n}		18	20	ns
	$A_{n}, \overline{L E}$ to Q_{n}		17	20	ns
$\mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{MR}}$ to Q_{n}		15	20	ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per latch	notes 1 and 2	19	19	pF

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs
$C_{L}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{1}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

8-bit addressable latch

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1,2,3$	$\mathrm{~A}_{0}$ to A_{2}	address inputs
$4,5,6,7,910,11,12$	Q_{0} to Q_{7}	latch outputs
8	GND	ground (0 V)
13	D	data input
14	$\overline{\mathrm{LE}}$	latch enable input (active LOW)
15	$\overline{\mathrm{MR}}$	conditional reset input (active LOW)
16	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

Fig. 3 IEC logic symbol.

Fig. 4 Functional diagram.

MODE SELECT TABLE

$\overline{\text { LE }}$	$\overline{\mathbf{M R}}$	MODE
L	H	addressable latch
H	H	memory
L	L	active HIGH 8-channel demultiplexer
H	L	reset

8-bit addressable latch

74HC/HCT259

FUNCTION TABLE

OPERATING MODES	INPUTS						OUTPUTS							
	$\overline{\mathrm{MR}}$	$\overline{\text { LE }}$	D	A_{0}	A_{1}	A_{2}	Q_{0}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	Q_{7}
master reset	L	H	X	X	X	X	L	L	L	L	L	L	L	L
demultiplex (active HIGH) decoder (when $\mathrm{D}=\mathrm{H}$)	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	L L L L L L L L	$\begin{array}{\|l\|} \hline \mathrm{d} \\ \mathrm{~d} \\ \mathrm{~d} \\ \\ \mathrm{~d} \\ \mathrm{~d} \\ \mathrm{~d} \\ \mathrm{~d} \\ \mathrm{~d} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \end{array}$	Q=d L	L Q=d L L L L L L	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{Q}=\mathrm{d} \\ & \mathrm{~L} \\ & \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & Q=d \\ & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{Q}=\mathrm{d} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	L L L L $Q=d$ L L	$\begin{aligned} & \hline L \\ & Q=d \\ & L \end{aligned}$	L L L L L L $Q=d$
store (do nothing)	H	H	X	X	X	X	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}
addressable latch	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \mathrm{~L} \end{array}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \\ & \mathrm{~d} \\ & \mathrm{~d} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{L} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{H} \end{array}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{array}{\|l\|} \hline Q=d \\ q_{0} \\ q_{0} \\ q_{0} \end{array}$	$\begin{aligned} & q_{1} \\ & Q=d \\ & q_{1} \\ & q_{1} \end{aligned}$	$\begin{aligned} & q_{2} \\ & q_{2} \\ & Q=d \\ & q_{2} \end{aligned}$	$\begin{aligned} & q_{3} \\ & q_{3} \\ & q_{3} \\ & Q=d \end{aligned}$	$\begin{aligned} & q_{4} \\ & q_{4} \\ & q_{4} \\ & q_{4} \end{aligned}$	$\begin{aligned} & q_{5} \\ & q_{5} \\ & q_{5} \\ & q_{5} \end{aligned}$	$\begin{aligned} & q_{6} \\ & q_{6} \\ & q_{6} \\ & q_{6} \end{aligned}$	$\begin{aligned} & q_{7} \\ & q_{7} \\ & q_{7} \\ & q_{7} \end{aligned}$
	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \\ & \mathrm{~d} \\ & \mathrm{~d} \end{aligned}$	$\begin{aligned} & \text { L } \\ & \text { H } \\ & \text { L } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & q_{0} \\ & q_{0} \\ & q_{0} \\ & q_{0} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \end{aligned}$	$\begin{aligned} & Q=d \\ & q_{4} \\ & q_{4} \\ & q_{4} \end{aligned}$	$\begin{aligned} & q_{5} \\ & Q=d \\ & q_{5} \\ & q_{5} \\ & \hline \end{aligned}$	q_{6} q_{6} $Q=d$ q_{6}	$\begin{aligned} & q_{7} \\ & q_{7} \\ & q_{7} \\ & Q=d \end{aligned}$

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care
$\mathrm{d}=$ HIGH or LOW data one set-up time prior to the LOW-to-HIGH $\overline{\mathrm{LE}}$ transition
$\mathrm{q}=$ lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared

Fig. 5 Logic diagram.

8-bit addressable latch

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see"74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
$I_{\text {CC }}$ category: MSI

AC CHARACTERISTICS FOR 74HC
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HC								V_{Cc} (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay D to Q_{n}		$\begin{aligned} & 58 \\ & 21 \\ & 17 \end{aligned}$	$\begin{array}{\|l\|} \hline 185 \\ 37 \\ 31 \end{array}$		$\begin{aligned} & 230 \\ & 46 \\ & 39 \end{aligned}$		$\begin{array}{\|l\|} \hline 280 \\ 56 \\ 48 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $A_{n} \text { to } Q_{n}$		$\begin{array}{\|l\|} \hline 58 \\ 21 \\ 17 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 185 \\ 37 \\ 31 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 230 \\ 46 \\ 39 \\ \hline \end{array}$		280 56 48	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 8
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{L E}$ to Q_{n}		$\begin{aligned} & 55 \\ & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 170 \\ & 34 \\ & 29 \end{aligned}$		$\begin{aligned} & 215 \\ & 43 \\ & 37 \end{aligned}$		$\begin{array}{\|l\|} \hline 255 \\ 51 \\ 43 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6
$\mathrm{t}_{\text {PHL }}$	propagation delay $\overline{M R}$ to Q_{n}		$\begin{aligned} & 50 \\ & 18 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 155 \\ & 31 \\ & 26 \end{aligned}$		$\begin{array}{\|l\|} \hline 195 \\ 39 \\ 33 \end{array}$		$\begin{array}{\|l} \hline 235 \\ 47 \\ 40 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 9
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		19 7 6	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$		$\begin{aligned} & \hline 119 \\ & 22 \\ & 19 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Figs 6 and 7
tw	$\overline{\text { LE }}$ pulse width HIGH or LOW	$\begin{array}{\|l\|} \hline 70 \\ 14 \\ 12 \\ \hline \end{array}$	$\begin{array}{\|l} 17 \\ 6 \\ 5 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 90 \\ 18 \\ 15 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 105 \\ 21 \\ 18 \\ \hline \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 6
tw	$\overline{\mathrm{MR}}$ pulse width LOW	$\begin{aligned} & \hline 70 \\ & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 17 \\ & 6 \\ & 5 \end{aligned}$		$\begin{aligned} & \hline 90 \\ & 18 \\ & 15 \end{aligned}$		$\begin{aligned} & \hline 105 \\ & 21 \\ & 18 \end{aligned}$		ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 9
$\mathrm{t}_{\text {su }}$	set-up time D, A_{n} to $\overline{\mathrm{LE}}$	$\begin{aligned} & \hline 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 19 \\ & 7 \\ & 6 \end{aligned}$		$\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \end{array}$		$\begin{array}{\|l\|} \hline 120 \\ 24 \\ 20 \\ \hline \end{array}$		ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Figs 10 and 11
t_{h}	hold time D to $\overline{\mathrm{LE}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l} \hline-19 \\ -6 \\ -5 \end{array}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$		ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 10
t_{h}	hold time A_{n} to $\overline{L E}$	2 2 2	$\begin{array}{\|l} \hline-11 \\ -4 \\ -3 \\ \hline \end{array}$		2 2 2		2 2 2		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 11

8-bit addressable latch

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
$I_{\text {CC }}$ category: MSI

Note to HCT types

The value of additional quiescent supply current $\left(\Delta \mathrm{I}_{\mathrm{CC}}\right)$ for a unit load of 1 is given in the family specifications.
To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\frac{\mathrm{A}_{n}}{\mathrm{LE}}$	1.50
D	1.50
$\overline{\mathrm{MR}}$	1.20

8-bit addressable latch

AC CHARACTERISTICS FOR 74HCT

$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb $\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HCT								V_{Cc} (V)	WAVEFORMS
		+25			-40 TO +85		-40 TO +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay D to Q_{n}		23	39		49		59	ns	4.5	Fig. 7
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $A_{n} \text { to } Q_{n}$		25	41		51		62	ns	4.5	Fig. 8
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{L E}$ to Q_{n}		22	38		48		57	ns	4.5	Fig. 6
$\mathrm{t}_{\text {PHL }}$	propagation delay $\overline{M R}$ to Q_{n}		23	39		49		59	ns	4.5	Fig. 9
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7
tw	$\overline{\mathrm{LE}}$ pulse width LOW	19	11		24		29		ns	4.5	Fig. 6
tw	$\overline{\mathrm{MR}}$ pulse width LOW	18	10		23		27		ns	4.5	Fig. 9
$\mathrm{t}_{\text {su }}$	set-up time D to $\overline{\mathrm{LE}}$	17	10		21		26		ns	4.5	Fig. 10
$\mathrm{t}_{\text {su }}$	set-up time A_{n} to $\overline{\mathrm{LE}}$	17	10		21		26		ns	4.5	Fig. 11
t_{h}	hold time D to LE	0	-8		0		0		ns	4.5	Fig. 10
t_{h}	hold time $A_{n} \text { to } \overline{\mathrm{LE}}$	0	-4		0		0		ns	4.5	Fig. 11

8-bit addressable latch

AC WAVEFORMS

Fig. 6 Waveforms showing the enable input $(\overline{\mathrm{LE}})$ to output $\left(Q_{n}\right)$ propagation delays, the enable input pulse width and the output transition times.

Fig. 7 Waveforms showing the data input (D) to output $\left(Q_{n}\right)$ propagation delays and the output transition times.

8-bit addressable latch

Fig. 9 Waveforms showing the conditional reset input $(\overline{\mathrm{MR}})$ to output $\left(\mathrm{Q}_{\mathrm{n}}\right)$ propagation delays.

Fig. 10 Waveforms showing the data set-up and hold times for the D input to $\overline{\mathrm{LE}}$ input.

The shaded areas indicate when the input is permitted to change for predictable output performance.
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}
$\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V

Fig. 11 Waveforms showing the address set-up and hold times for A_{n} inputs to $\overline{\mathrm{LE}}$ input.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

